# FRP筋大型粘结式群锚体系试验研究

方志 张旷怡 涂兵

(湖南大学土木工程学院 长沙 410082)

摘 要:本文开发了一种以超高性能水泥基材料活性粉末混凝土(RPC-Reactive Powder Concrete)作为粘结 介质锚固多束碳纤维增强塑料(CFRP-Carbon Fiber Reinforced Polymer)预应力筋的粘结式锚固体系。制作 了一组采用9根直径12.6mm的CFRP筋作为预应力筋的CFRP筋-锚具组装件GA12-9,通过张拉试验研究了其 力学性能。试验中观测了多束筋材受力的不均匀特征,最终多束筋材发生粘结破坏。研究证明,群锚试件 特有的不均匀性会降低其承载能力,研究确定了承载能力折减系数。同时,本文确定了适用于单根、多根 CFRP筋粘结锚固体系的粘结强度以及临界锚固长度的预测公式,与试验结果吻合良好。研究证明,采用9 根抗拉强度约2300MPa的带肋CFRP筋作为预应力筋,以强度为130MPa的RPC作为粘结介质,筋材间净距设 置一倍筋直径,需要25倍筋材直径锚固长度能够提供其有效锚固。

关键词:纤维增强塑料筋 锚具 活性粉末混凝土 群锚体系 不均匀性 承载能力折减 粘结应力 粘结长度

DOI: 10.13211/j.cnki.pstech.2015.05.002

PRESTRESS TECHNOLOGY

## 1 研究介绍

近年来,纤维增强复合材料(FRP-Fiber Reinforced Polymer)成为了土木工程领域的新兴 材料。由于其具有强度高、免锈蚀、刚度大同时 自重轻、使用寿命长、较好的抗疲劳性能以及弹 性性能,FRP筋被广泛应用于混凝土结构中的预 应力筋、桥梁中的拉索或吊杆、岩锚体系的锚杆 等。其优异的特性能够提高结构的工作效率,提 升整体性能[1]。虽然FRP在轴向拉力作用下的工 作性能良好,但其对横向受力十分敏感[2]。FRP 筋应用于土木工程结构面临的最大问题即是建立 合理的FRP筋锚固体系。目前,国际上单位和机 构进行了大量的研究, FRP材料的相关技术也在 逐渐进步,但是,现有可商业化生产的锚具体系 并不能满足FRP筋在土木工程中进一步应用的需 求、尤其是针对于FRP筋大吨位群锚体系的研究 还很欠缺。因此,适用于FRP筋的可靠锚固体系 仍然有待研究[3]。

FRP筋已有的楔形锚固体系包括树脂胶塞式 [4], 锥塞式[5], 夹具式[6]以及分离夹片式锚具[7-9]。除采用钢制夹片及锚筒的楔形锚固体系, Shaheen和Shrive率先采用超高性能水泥基材料活 性粉末混凝土(RPC-Reactive Powder Concrete) 制作了非金属的FRP-RPC锚固体系。该体系包含

用RPC材料制作的4片夹片和锚筒,再在外部包 裹碳纤维增强塑料(CFRP-Carbon Fiber-Reinforced Polymer)片材予以加强。该体系成功 用于锚固单根螺旋压纹CFRP筋材[10]。近期,还 出现了一种新型分离式楔形锚具,适用于锚固石 英砂表面CFRP筋[11]。虽然楔形锚具用于锚固光 圆筋材常常能获得良好的效果[12-13],但用于锚 固FRP筋、由于筋材抗剪强度低、楔形锚具常常 会嵌入筋材表面,造成筋材损伤而导致其发生过 早破坏[14]。相比其他类型的锚固体系,FRP筋 的粘结式锚固体系展现出更广泛的适用性。自上 世纪90年代起, 涌现了采用各种粘结介质、用于 不同FRP筋材的粘结式锚具、针对这些锚固体系 的研究也已系统展开[15-20]。大量研究证明,粘 结式锚固体系更适合锚固FRP筋材。但是,传统 的树脂材料、普通水泥砂浆面临着材料老化、徐 变过大的问题,由于其与FRP筋的超高性能不一 致,采用这些传统材料作为粘结介质并不合适[8] [21]。已有的长期性能试验证明,粘结介质的耐 久性将极大地影响其与FRP筋的粘结性能[22]。 同时,由于粘结式锚固体系往往采用预制,再在 工程现场进行安装,已建成结构日后的维护及更 换将极为困难,因此,粘结介质的耐久性能显得 更为重要。近年来,出现了一种新型的粘结式锚

固体系,该体系采用超高性能混凝土RPC作为粘结介质,由于RPC具有高强度、优异的耐久性,保证了锚固体系中锚固介质(RPC)的材料性质与锚固对象(FRP)的材料性质相一致,解决了上述传统体系存在的问题。在一系列试验研究中,该锚固体系展现了良好的性能[23-24]。

PRESTRESS TECHNOLOGY

同时,群锚体系具有不同于单根筋材锚固 体系的特点。一方面,群锚体系中,多根筋材 材料性质、几何尺寸或锚固状态的差别将不可 避免地产生不均匀性,导致多束筋材受力不 均。因此,群锚体系的承载能力并不能通过单 根筋材的承载能力简单叠加而来,在群锚设计 时,必须考虑不均匀性的影响对体系的承载能 力进行折减。另一方面,在粘结锚固区,多束 筋材与灌浆料的粘结性能也不同于单根筋材, 群锚体系的锚固长度需要通过研究确定。但关 于FRP群锚体系的研究非常有限,且不够系统。 加拿大的Zhang和Benmokrane开发了FRP筋的群 锚体系,并从事了相关的试验研究[25]。他们采 用9根1500mm长、直径为7.9mm的压纹FRP筋作 为预应力筋,以普通水泥砂浆作为粘结介质, 制作了一组群锚试件。张拉试验中,最大张拉 荷载控制在60%理论极限荷载(936kN),即 557kN。试验结果证明了群锚试件具有不同于单 根试件的特点,体现在界面粘结强度、粘结刚 度等方面。但是在该试验中,由于试件尺寸有

限, 施加的荷载水平不高, 并未针对多束FRP筋 受力的不均匀性进行观测及研究。而在实际工程 譬如桥梁拉索、吊杆、岩锚锚杆等结构中, 采用 的预应力筋长度往往较长, 设计锚固荷载往往较 大, 因此, 需要针对这些大尺寸、大吨位的群锚 体系受力性能进行系统研究。

中国湖南省吉茶高速公路的控制性工程矮寨 大桥为塔梁分离式悬索桥, 主跨1176m。为减小 主缆应力幅、增加结构整体刚度, 该桥在主缆端 部附近区域设置地锚吊杆,即吊杆不与加劲梁连 结而是与地面连接这一有别于普通悬索桥吊杆的 新型结构体系,见图1。这些地锚吊杆下设计了 大型岩锚体系,吊杆与岩锚基础相连形成地锚吊 杆,从而实现对主缆的预紧作用。为形成一种具 有超高性能以及耐久性的岩锚体系,新体系采用 CFRP筋作为岩锚锚杆、RPC作为粘结介质,如图 1所示[26]。因此,需首先建立基于两种高性能材 料的群锚体系,作为岩锚的地上端锚固体系。在 前期研究的基础上[24],本文设计了基于CFRP筋 与RPC粘结介质的群锚体系,并建立了足尺模型 试件进行张拉试验,对其受力性能进行系统研 究。文中,针对群锚体系的不均匀性、多束 CFRP筋与RPC的界面粘结强度进行了深入分析, 以掌握FRP群锚体系的特点, 促进FRP筋材在土 木领域更为广泛的应用,并为工程岩锚体系的设 计提供参照。



图1 矮寨桥地锚吊杆及高性能岩锚体系

《预之力技术》2015年第5期总第112期

该锚固体系安装时,将多束CFRP筋先穿过

张拉端压紧环、橡胶定位件,再穿过锚筒,最

后穿过自由端锚板进行临时固定。锚固区多束

FRP筋排布需要满足几点要求。首先,筋材的排

列应考虑在横截面上均匀、呈中心对称,以避

免对中误差造成筋材在张拉时复合受力。同时,筋材间应当设置一定间距保证与RPC灌浆料

的粘结锚固力。Zhang建议多束FRP筋的最小保

护层厚度为5mm[25]。根据前期研究,考虑筋材

直径的差别,群锚FRP筋间净距不宜小于1倍筋

材直径,以保证粘结锚固效果[24]。此外,锚固

区的FRP筋也设置了0~3°的倾角,以提高与浆

体的粘结力[23-24]。多根CFRP筋排列形式确定

后,可以此为依据确定锚具定位件上孔径排布

(PRESTRESS TECHNOLOGY) 第五届欧维姆优秀预友力论文奖奖奖论文

## 2 试验设计

## 2.1 群锚锚固端设计

以RPC作为粘结介质的多束CFRP筋锚固端如 图2所示。多根CFRP筋的粘结式锚具及其配件包 括:锚筒、端部定位件(包括橡胶定位件、压紧 环、端部锚板)以及张拉用螺母。

锚筒为钢制套筒,作为灌注RPC锚固CFRP筋 的容器。锚筒内腔长度依据所需的锚固长度确 定。锚筒外壁设计了螺纹,在群锚体系张拉完成 后,通过旋紧锚筒上的螺母将预应力荷载传递至 结构上。锚筒内壁设计了3°倾角,使筒内粘结 介质呈楔形,在张拉预应力时筒壁会对浆体产生 轴向压力,有助于提高锚固区粘结锚固力[24]。 锚筒内壁靠近自由端设置了一定长度的螺纹,用 以安装张拉设备。





图2 粘结式锚具

及大小。

### 2.2 RPC灌浆料

RPC是一种具有高强度、极小徐变及收缩、 良好耐久性能的超高性能混凝土。它的基本原理 是:基于最大密实度原理优化配合比,以减小混 凝土内部的微裂缝和孔隙等缺陷,获得由其组成 材料所决定的最大承载能力以及良好的耐久性 [27]。配置RPC的主要材料包括水泥,硅灰,石 英砂,石英粉以及减水剂。经过配合比试验确定 具有良好力学性能以及工艺性能的RPC配比见表 1,依据该配比制作的RPC材料用于当前群锚体 系灌浆。 锚具内RPC灌浆采用热水养护,热水养护是 指试件初凝后拆模,置于养护池内80±2℃的热 水中养护48h,再静置水中自然冷却至室温。RPC 进行热水养护能够获得较高的早期强度,还能极 大地减小材料的收缩徐变[28]。同时,对一部分 试件采用标准养护进行比较,标准养护条件要求 养护温度为20±3℃,湿度控制在95%以上。与 群锚试件同期浇筑的边长70.7mm立方体试块的强 度见表2。观察可知,RPC的3天热水养护强度基 本达到其28天标准养护强度值。

## 《预定力技术》2015年第5期总第112期

## 第五届欧维姆优秀预应力论文奖奖奖论文

|         |         | ACI REVELET                       |         |
|---------|---------|-----------------------------------|---------|
| 材料      |         | 类型                                | 质量比     |
| 水泥      |         | 52.5-R                            | 1       |
| 硅灰      |         | 粒径0.1µm                           | 0.25    |
| 石英砂     |         | 粒径0.23~0.45mm                     | 1.10    |
| 石英粉     |         | 粒径0.05mm                          | 0.30    |
| 减水剂     | 规范<br>( | 聚羧酸型<br>《混凝土化学添加*<br>ASTMC494)中F型 | 勿》 0.02 |
| 水       |         |                                   | 0.225   |
| 水灰比     |         |                                   | 0.225   |
| 水胶比     |         |                                   | 0.18    |
|         | 表2      | RPC抗压强度(M                         | Pa)     |
| 养护方法    |         | 单根试件灌浆                            | 多根试件灌浆  |
| 热水养护    |         | 127.5                             | 129.2   |
| 标准养护7天  |         | 110.7                             | 114.5   |
| 标准养护28天 |         | 130.2                             | 132.6   |

PRESTRESS TECHNOLOGY

## 2.3 CFRP筋

本研究中采用的CFRP筋如图3所示。筋材的 名义直径为12.6mm,该筋材表面十字肋同样为碳 纤维材料,经后期加工缠绕至筋材表面。十字肋 宽度3mm,厚度0.5mm,间距为16mm。因此,筋 材核心部分直径为11.6mm。张拉时仅筋材的核心 部分发挥作用,计算得到筋材核心部分截面面积 为106mm<sup>2</sup>(*A*<sub>1</sub>)。

群锚试件制作之前,首先进行了5组单根 CFRP筋试件的张拉试验。单根试件两端采用以 RPC作为粘结介质的粘结式锚具,5组试件分别 命名为S1~S5,S表示单根试件(Single)。张拉 试验加载至筋材发生拉断破坏或滑移破坏,试验 过程中,观测了张拉荷载以及筋材自由段应变变 化情况。试验结果见表3。对于带肋CFRP筋,其 抗拉强度(f<sub>µ</sub>)采用筋材核心部分横截面积计算 求得。参考规范ACI 440[29–30],筋材的弹性模 量计算采用实测应力-应变曲线上20%至50%曲线 段斜率。因此,根据两组发生拉断破坏试件S4、 S5计算得到该带肋CFRP筋的极限承载力为 244kN,抗拉强度为2302MPa。各组CFRP筋的应 力-应变曲线呈线弹性,由于实测5组试件的极限 荷载均超过80%筋材极限荷载,筋材的弹性模量 取5组应力-应变关系计算的平均值,得到筋材的 弹性模量为146.2GPa。



表3 单根CFRP筋试件试验结果

| - | 试件编号 | RPC灌浆料强度(MPa) | 粘结长度 (mm) | 破坏形式 | 极限荷载(kN)      | 弹性模量(GPa)         |
|---|------|---------------|-----------|------|---------------|-------------------|
|   | S1   | 85            | 300       | 滑移破坏 | 217           | 160               |
|   | S2   | 102           | 300       | 滑移破坏 | 237           | 144               |
|   | S3   | 128           | 240       | 滑移破坏 | 229           | 150               |
|   | S4   | 102           | 360       | 拉断破坏 | 242           | 131               |
|   | S5   | 128           | 300       | 拉断破坏 | 246           | 146               |
|   |      | 平均值           |           |      | 244 ( 84–85 ) | 146.2 ( \$1-\$5 ) |

## 2.4 群锚试件设计

由于本篇开发的CFRP筋群锚体系将作为岩 锚地上端锚固系统,因此,群锚体系的的设计以 工程设计为依据。矮寨桥C00吊杆岩锚体系采用 锚杆的设计荷载(*T<sub>d</sub>*)为850kN。本项目采用国 产带肋CFRP筋作为锚杆材料,单根筋材的极限 承载力为244kN,考虑大于2倍安全系数与群锚的 不均匀性,选择9根带肋CFRP筋作为预应力筋, 群锚体系预应力筋的名义极限承载力(*T<sub>u</sub>*)为 2196kN,命名为GA12-9。其中,GA表示岩锚 (Ground Anchor),12表示筋材直径(mm),9 表示筋材数。本研究中,制作了一组GA12-9的 第五届欧维姆优秀预应力论文奖奖奖论文

群锚足尺模型试件进行张拉试验。

PRESTRESS TECHNOLOGY)

群锚试件形式为两端锚固的CFRP筋-锚具组 装件,将多束CFRP筋两端同时锚固在以RPC作为 粘结介质的粘结式锚具中,中间为筋材自由段, 构成了CFRP筋-锚具组装件试件如图4所示。试 件两端设计不同长度的锚固端,锚固长度较长的 定义为锚固端A,另一端定义为锚固端B。锚固端 A的锚固长度参考岩锚地上端群锚体系选取为 360mm, 锚固端B采较短的锚固长度200mm, 以 研究多根CFRP筋群锚体系的粘结破坏。试件两 端采用同类型的群锚体系,筋材间净距不宜小于 1倍筋材直径,锚固区CFRP筋设置了0~3°的倾 角[24]。锚具相关尺寸如图4、表4所示,锚固 区预应力筋排列形式及编号如图5所示。由于 试件参考实际结构设计制作,自由段筋材长度 为10m级。





(c)橡胶定位件
(d)橡胶定位件上筋材孔位及编号
图5 锚具定位件多束筋材分布情况(mm)

## 表4 试件GA12-9关键尺寸

| C            | FRP筋           |            |              | 锚             | 固端            | 筋材排布        |  |                  |                 |  |
|--------------|----------------|------------|--------------|---------------|---------------|-------------|--|------------------|-----------------|--|
| 自由段长<br>(mm) | 度 粘结长度<br>(mm) | 长度<br>(mm) | 外径<br>( mm ) | 加载端内径<br>(mm) | 自由端内径<br>(mm) | 内壁倾角<br>(°) |  | 锚固段筋材最大倾角<br>(°) | 筋材间最小净距<br>(mm) |  |
| 9000         | 锚固端A-360       | 520        | 210          | 117           | 155           | 3           |  | 3                | 12              |  |
| 9000         | 锚固端B-200       | 310        | 210          | 117           | 138           | 3           |  | 3                | 12              |  |

## 《预之力技术》2015年第5期总第112期

## 2.5 加载及测试系统

群锚试件GA12-9放入张拉沟进行张拉试 验,试验装置如图6所示。采用穿心式千斤顶施 加张拉力,试件一端固定,并连接大吨位压力传 感器测试张拉荷载,另一端安装在移动支座上, 在张拉过程中可随着试件变形而移动。

第五届欧维姆优秀颜友力论文奖奖奖论文

(PRESTRESS TECHNOLOGY)



## 图6 群锚组装件张拉试验

首先对试件进行预张拉调节自由段筋材线 型,预张拉荷载为78kN,再进行正式加载。从初 始荷载78kN单调分级加载,加载速率为100 kN/min。加载过程中,对每级荷载下的荷载大 小、锚头位移值、筋材滑移、9根CFRP筋材的自 由段应变均进行测量。

### 3 试验结果

## 3.1 破坏形式

试件第一次加载至最大荷载950kN时, #9筋 材在锚固端B率先发生滑移破坏,筋材从锚具中 拔出,见图7a。由于张拉荷载较大,筋材自由 段长度长,滑移破坏产生的振动力致使#9筋材 被震断成若干段,在锚固端A端部折断,如图7b 所示。#9筋材形态见图8。卸载后,对剩余8根 筋材的组装件试件进行检查,确认各筋材形 态、锚固端均良好,然后进行第二次张拉试 验,初始荷载78kN。加载至1400kN后的持载过 程中,锚固端B的剩余筋材相继滑脱,导致组装 件发生连锁破坏。最终,试件整体破坏,荷载 迅速降为零。锚固端B所有筋材均发生滑移破 坏;面锚固端A状态良好,实测筋材出现的最大 滑移量为0.47mm。



(a) 锚固端B加载端



(b)锚固端A加载端 图7 第一次张拉后锚固端形态

#9





(b) 锚固端B
图8 #9筋材破坏后形态
3.2 群锚体系不均匀性
3.2.1 多束筋材受力不均匀特性
两次加载中,各级荷载下的实测拉力值与计

算拉力值的对比情况见表5。其中,实测拉力值

通过试件一端设置的量程5000kN压力传感器直接 测试得到。计算值为多束筋材受力之和,每根筋 材所受拉力通过实测筋材应变,结合筋材的弹性 模量146.2GPa、有效横截面积106mm<sup>2</sup>计算获得。 对比两组数据可知,实测拉力与计算拉力吻合良 好,仅在荷载小于200kN时差别较大,原因在于 压力传感器量程较大,在荷载等级较低时测试 精度不够。该结果说明,组装件中各CFRP筋所 受拉力可以通过实测应变结合筋材的弹性模量 146.2GPa、有效横截面积106mm<sup>2</sup>计算获得,带肋 CFRP筋之间的刚度差异可以忽略。同时,由于 CFRP为线弹性材料,多束筋材在张拉荷载下的 应变不均匀性可以反映其受力不均匀性。

GA12-9两次加载过程中各筋材自由段应变 随张拉荷载变化情况如图9所示。表格6同时列出

了几个关键荷载等级下各筋材的应变测量值及统 计量。观察曲线及表格数据可知,随着荷载增 加,各筋材自由段应变持续上升,受到的轴力逐 渐增大;群锚结构多束CFRP筋的自由段应变基 本呈线性变化,与FRP材料的线弹性特征相符。 但在各级张拉荷载下,各筋材的应变值存在差 异,说明每根筋材受力不同,荷载在多根筋材间 分配不均匀。条形图10突出地表现了这一特征。 对比两次加载的应变曲线可知,第二次加载过程 中筋材的受力不均匀性较第一次加载时有所降低。 此外,加载过程中,筋材应变曲线出现若干拐点, 如第一次加载过程中的300kN、400kN、700kN,说 明部分筋材所受拉力存在突变。其原因是由于部分 筋材在拉力作用下出现了滑移,筋材自由段长度变 化,导致多束筋材所受拉力出现更分布。

表5 实测拉力与计算拉力对比

|                               | 78   | 100  | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900   |      |      |      |      |      |
|-------------------------------|------|------|------|------|------|------|------|------|------|-------|------|------|------|------|------|
| 第一次加载计算拉力N <sub>t</sub> '(kN) | 70   | 90   | 188  | 313  | 405  | 503  | 595  | 694  | 800  | 907   |      |      |      |      |      |
| $N_t$ , $(N_t)$               | 0.90 | 0.90 | 0.94 | 1.04 | 1.01 | 1.01 | 0.99 | 0.99 | 1.00 | 1.01  |      |      |      |      |      |
| 第二次加载实测拉力N <sub>t</sub> (kN)  | 78   | 100  | 200  | 300  | 400  | 500  | 600  | 700  | 800  | 900.0 | 1000 | 1100 | 1200 | 1300 | 1400 |
| 第二次加载计算拉力N <sub>i</sub> '(kN) | 90   | 116  | 223  | 325  | 428  | 522  | 625  | 716  | 807  | 901   | 997  | 1093 | 1195 | 1299 | 1403 |
| $N_t$ , $N_t$                 | 1.16 | 1.16 | 1.11 | 1.08 | 1.07 | 1.04 | 1.04 | 1.02 | 1.01 | 1.00  | 1.00 | 0.99 | 1.00 | 1.00 | 1.00 |



|  | 图9 | 多束CFRP筋荷载 | (总张拉力) | -应变曲线 |
|--|----|-----------|--------|-------|
|--|----|-----------|--------|-------|

表6 筋材应变统计

|         |            |       |       | 平均应变  | 标准差   | 变异系数  |       |       |       |      |                       |                     |            |
|---------|------------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----------------------|---------------------|------------|
| 何執寺级    |            | #1    | #2    | #3    | #4    | #5    | #6    | #7    | #8    | #9   | ( $\mu \varepsilon$ ) | $(\mu \varepsilon)$ | " $\eta$ " |
| <br>第一次 | 应变值 ( με ) | 6664  | 5980  | 4613  | 6206  | 6008  | 5714  | 6283  | 7247  | 9811 | (500                  | 10.40               |            |
| 900kN   | 与平均值比值     | 1.02  | 0.92  | 0.71  | 0.95  | 0.92  | 0.88  | 0.97  | 1.11  | 1.51 | 6503                  | 1349                | 0.207      |
| 第二次     | 应变值(με)    | 5930  | 6929  | 8248  | 7265  | 7042  | 7350  | 6848  | 8549  |      |                       |                     | 0.486      |
| 900kN   | 与平均值比值     | 0.82  | 0.95  | 1.13  | 1.00  | 0.97  | 1.01  | 0.94  | 1.18  |      | 7270                  | 770                 | 0.106      |
| 第二次     | 应变值(με )   | 10370 | 10922 | 12232 | 11349 | 10656 | 11617 | 10706 | 12681 |      |                       |                     |            |
| 1400kN  | 与平均值比值     | 0.92  | 0.97  | 1.08  | 1.00  | 0.94  | 1.03  | 0.95  | 1.12  |      | 11317                 | 762                 | 0.067      |

通过应变测试得到的荷载分布不均匀情况揭示了群锚试件破坏的内在机理。在第一次张拉过程中,#9筋材所受拉力明显大于其它八根筋材,如图9a所示。在900kN荷载下,#9筋材的应变值为9811με,而其它八根筋材的应变值均小于7247με。随着荷载继续增加,#9筋材的锚固端B接近极限状态,在荷载达到950kN时发生滑移破坏。#9筋材破坏后,传感器显示张拉荷载出现些许波动,又再次稳定在约880kN。因此,试件第一次加载出现的单根筋材滑移破坏,可以归结为具有较大不均匀性的群锚结构的局部破坏。在第二次加载中,观察图9b应变分布情况可知各筋材受力差别不大。表6数据显示,在荷载达到1400kN时八根筋材均受到较大拉力,应变范围为10370-12681με,筋材达到或接近极限状态。

PRESTRESS TECHNOLOGY



前文研究已经证明,群锚试件中多束CFRP 筋的弹性模量、横截面积等材料性质差异可以忽 略。此时,若多束CFRP筋的自由段长度一致、 锚固体系也完全相同,在张拉荷载作用下,筋材 的长度变化一致、弹性伸长量相同,实测筋材应 变值也将会相同。而本试验中,实测各筋材应变 值并不相同,产生这种差异只能归结为多根筋材 的自由段长度不一致、或锚固端的粘结存在差 异。因此,#9筋材在第一次张拉过程中出现过早 滑移破坏的原因应当为,安装误差造成了筋材自 由段长度不一致、或端部锚固环境存在差别。结 合实测应变值可对各筋材的极限状态进行进一步 分析。第一次加载的最大荷载为950kN,试验中 测试了900kN荷载下各筋材应变,#9筋材在900kN 时的应变为9811µɛ,考虑应变随荷载增加呈近似 线性增长,950kN下筋材的应变为10356 $\mu\epsilon$ (=9811×950/900),此时,#9筋材发生滑移破 坏。第二次加载的最大荷载为1400kN, 1400kN 荷载下#1~8筋材均发生滑移破坏,极限状态应变 值范围为10370-12681με。对比可知,筋材#1~8 的极限应变与#9的极限应变值非常接近,说明群 锚试件中,九根筋材的锚固端粘结状况类似。而 在第一次张拉过程中,900kN荷载下,#9筋材的 应变值与九根筋材的平均应变值相差高达50%。 基于以上分析可认为,试件在安装过程中的误差 引起了#9筋材自由段长度与其他筋材不一致,导 致其在第一次加载过程中,发生过早滑移破坏。 下文中,将选择更具代表性的#1~8筋材的受力特 征对群锚试件的不均匀性进行分析。

为描述多根筋材受力的不均匀特征及其变 化,借鉴统计学中的变异系数CV(Coefficient of Variance)引入不均匀系数 $\eta$ 的概念如式(1):

$$\eta = \frac{\sqrt{\sum_{i=1}^{n} (N_i - \overline{N})^2 (n-1)}}{\overline{N}}$$
(1)

式中, η 为多束筋材群锚结构的不均匀系数, N<sub>i</sub> 为编号为# i 筋材所受拉力, N 为多束CFRP筋平均 拉力, n 为群锚试件筋材数。由不均匀系数的定 义可知,不均匀系数越大,多根筋材的荷载分配 也越不均匀。

不考虑群锚试件各筋材弹性模量(*E<sub>i</sub>*)、横 截面面积(*A<sub>i</sub>*)的差异,不均匀系数η可以直接 由筋材自由段应变计算求得。同时,由于#9筋材 的状况特殊,计算不均匀系数时也仅考虑#1~8筋 材,从而获得更有代表性的群锚特征。将实测筋 材应变值代入式(1)计算,得到试件GA12-9在 两次加载过程中不均匀系数的变化情况如图11 所示。

图中不均匀系数的变化情况为:第一次加载,除#9筋材后的八组筋材的不均匀系数由0.180 变化至0.129,平均值为0.129;第二次加载,八 根筋材试件的不均匀系数由0.184变化至0.067, 平均值为0.112。第二次加载的不均匀系数平均值 为第一次加载的87%。可知,预加载可以调节群 锚体系的形态,从而减小体系的不均匀性。

第五届欧维姆优秀颜应力论文奖奖奖论文



### 3.2.2 群锚体系承载能力预测

对于多根CFRP筋的粘结式群锚试件,多种 因素会影响多根CFRP筋的共同工作性能。在制 作过程中有可能存在灌浆质量缺陷、安装误差等 问题,每根CFRP筋材的形态并不能保证完全一 致。即使在同一个锚具内,每根筋材两端的粘结 情况也不完全相同。材料方面,组成CFRP的基 体材料及辅料含量的变化、生产工艺的差异。都 可能影响到其抗拉、抗剪等力学性能,每根 CFRP筋甚至不能保证完全相同。因此,群锚体 系的不均匀性问题不可避免。结构的不均匀性越 严重,部分筋材承受的荷载比例大,结构越容易 发生提前破断,说明群锚体系的承载能力不能仅 仅是单根筋材承载力的简单叠加。因此,在预测 群锚体系的最终承载力时,需考虑试件的不均匀 特性对结构的理论承载能力进行折减。

假定在每一级荷载下,群锚体系的各筋材拉 力值满足正态分布,则其中拉力最大值在满足 95%保证率的条件下可以表示为式(2a):

 $N_{i,max} = \overline{N} + 1.645 \sigma = \overline{N} (1 + 1.645 \eta)$  (2a) 式中, $N_{i,max}$ 为最大拉力值, $\overline{N}$ 为#i筋材所受拉力;  $\sigma$ 、 $\eta$ 分别为群锚体系多束筋材拉力值的标准 差及变异系数(即不均匀系数)。

群锚体系的破坏准则可定义为任意筋材达到

极限状态。若锚固端设计能够提供多根筋材以有 效锚固,则筋材应当发生理想的拉断破坏,因 此,体系的破坏准则可以表示为式(2b):

$$N_{i,max} = N_{s,u} \tag{2b}$$

式中, $N_{s,u}$ 为单根筋材的极限拉力,本试验中所 用带肋CFRP筋为244kN。结合式(2a)及式 (2b)可以得到:

$$\bar{N} = \frac{N_{s,u}}{1+1.645\eta}$$
(3)

群锚体系考虑不均匀性的理论承载力*N*<sub>u</sub>以及 名义承载力*N*<sub>u</sub>可分别表示为式(4a)、(4b):

$$N_{\mu} = n\bar{N} \tag{4a}$$

$$N_{u} = nN_{s,u} \tag{4b}$$

因此,结构的承载能力折减系数λ折减可以 通过下式计算:

$$\lambda = \frac{N_u}{N'_u} = \frac{n\bar{N}}{nN_{s,u}} = \frac{\bar{N}}{N_{s,u}} = \frac{1}{1+1.645\eta} \quad (5)$$

本文研究可知,粘结式群锚体系采用近十 根CFRP筋作为预应力筋、筋束长度约10m,则 结构承载能力折减系数为0.82,对应不均匀系数 0.129;若经过预张拉,结构的承载能力折减系数 为0.84,不均匀系数为0.112。

## 3.3 群锚体系粘结性能

3.3.1 平均粘结强度

粘结锚固体系中,临界锚固长度需要依据筋 材与粘结介质之间的粘结强度确定,是体系设计 需确定的重要参数。张拉荷载T下的锚固段平均 粘结应力 $\tau$ 可按式(6)进行计算,对于发生滑移 破坏的试件,由于破坏在CFRP-RPC结合面发 生,该极限平均粘结应力 $\tau$ 即为锚固区CFRP-RPC 结合面粘结强度 $\tau_m$ :

*τ* =*T*/*πdL* (6) 公式中*d*为CFRP筋名义直径,*L*为锚固段长度。

试件9根筋材均在锚固端B发生滑移破坏。极限荷载可由实测筋材应变(见表6)结合带肋 CFRP弹性模量(146.2GPa)、有效横截面积 (106mm<sup>2</sup>)计算求得。因此,可以得到实测界面 粘结强度见表7。

考多根压纹CFRP筋-RPC界面粘结强度公式

|     |                      | f       | d      | d L h                                   |          | $h \alpha$ |      | T <sub>max</sub> |         | $\tau_m$ (MPa) |         |  |
|-----|----------------------|---------|--------|-----------------------------------------|----------|------------|------|------------------|---------|----------------|---------|--|
| 筋材致 | 筋材号                  | ( MPa ) | ( mm ) | ( mm )                                  | ( mm )   | (°)        | 破坏形式 | (kN)             | 实测值     | 预测值            | 预测值/实测值 |  |
| 1   | S1                   | 85      | 12.6   | 300                                     |          | 0          | 滑移破坏 | 217              | 18.28   | 18.42          | 1.008   |  |
| 1   | S2                   | 102     | 12.6   | 300                                     | -        | 0          | 滑移破坏 | 237              | 19.97   | 21.12          | 1.058   |  |
| 1   | S3                   | 128     | 12.6   | . 240                                   | -        | 0          | 滑移破坏 | 229              | 24.12   | 23.23          | 0.963   |  |
| 1   | S4                   | 102     | 12.6   | 360                                     | -        | 0          | 拉断破坏 | 242              | > 16.99 | 22.65          | -       |  |
| 1   | S5                   | 128     | 12.6   | 300                                     | -        | 0          | 拉断破坏 | 246              | > 20.73 | 25.04          | -       |  |
| 8   | GA12-9/#1            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 161              | 20.30   | 21.84          | 1.076   |  |
| 8   | GA12-9/#2            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 169              | 21.38   | 21.84          | 1.022   |  |
| 8   | GA12-9/#3            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 190              | 23.95   | 21.84          | 0.912   |  |
| 8   | GA12-9/#4            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 176              | 22.22   | 21.84          | 0.983   |  |
| 8   | GA12-9/#5            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 165              | 20.86   | 21.84          | 1.047   |  |
| 8   | GA12-9/#6            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 180              | 22.75   | 21.84          | 0.960   |  |
| 8   | GA12-9/#7            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 166              | 20.96   | 21.84          | 1.042   |  |
| 8   | GA12-9/#8            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 196              | 24.83   | 21.84          | 0.880   |  |
| 9   | GA12-9/#9            | 130     | 12.6   | 200                                     | 12       | 3          | 滑移破坏 | 172              | 21.74   | 21.68          | 0.997   |  |
|     |                      | 发出 多    |        | 4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 | かやもてんりょう | 41 47 + +  |      |                  | 平均      | 夠值             | 0.996   |  |
|     | 单根、多根试件中发生粘结破坏的12根筋材 |         |        |                                         |          |            |      |                  |         |                | 0.060   |  |

表7 试件粘结强度

形式[23],结合单根、多根带肋CFRP筋粘结强度 实测结果,可得到适用于计算单根及多根带肋 CFRP筋-RPC界面粘结强度的公式(7):

$$\mathbf{r}_m = (0.42 + 0.01 \frac{L}{d_e})(1 + 0.06\alpha) f_{cu}^{3/4} \qquad (7)$$

式中,  $\tau_m$ 为界面粘结强度(MPa), L为锚固长 度(mm),  $f_{cu}$ 为锚固区RPC抗压强度(MPa),  $\alpha$ 为锚筒内壁倾角(°)。 $d_e$ 为带肋CFRP筋等代 直径,单根筋材锚固体系中 $d_e$ 等于筋材直径d, 群锚体系中采用(8)式计算求得:

$$d_e = \sqrt{n} \left( d - 0.08h \right) \tag{8}$$

式中n为筋材根数,h为筋材间最小净距 (mm), $0.5d \le h \le 2d$ ,当h > 2d时取 = 2d。

表7中列出了采用式(7)计算获得的群锚粘 结强度值。对比可知,粘结强度实测值与计算值 吻合较好,说明公式不仅适用于预测单根带肋 CFRP筋-RPC界面的粘结强度,同样适用于预测群 锚体系粘结强度。因此,在多根带肋CFRP筋粘结 锚固体系中,采用130MPa的RPC作为粘结介质, CFRP筋-RPC界面的粘结强度为20.30-24.83MPa, 平均值为22.71MPa、标准差1.50MPa。 3.3.2 临界锚固长度

粘结锚固体系中,抗拉强度 $f_{tu}$ 的FRP筋在

RPC中的临界锚固长度 ler 需满足关系式:

4 (  $l_{cr} / d$  )  $\tau_m - f_{fu} = 0$ 

(9)

式中, d为带肋CFRP筋名义直径,  $\tau_m$ 为筋材-粘 结介质的界面粘结强度。带肋CFRP筋-RPC界面 粘结强度可由式(7)计算求得。将式(7)代入 式(9), 可得到带肋CFRP筋在RPC中的临界锚 固长度  $l_{er}$ 计算公式为:

$$l_{cr} = d_e \left( \sqrt{441 + 25 \frac{f_{fu}}{k} \frac{d}{d_e}} - 21 \right)$$
 (10)

式中:

 $k = (1 + 0.06 \alpha) f_{fu}^{3/4}$ (11)

需要注意的是,式中d<sub>e</sub>为带肋CFRP筋等代直径,d为单根筋材名义直径。将由公式(10)计算得到的各临界锚固长度与实际锚固长度相比较,结果见表8。可知,筋材的实际锚固长度机 于预测临界长度,试件均发生了滑移破坏;实际 长度大于临界长度计算值,试验中未观察到破坏,以S5为例,其锚固长度与临界锚固长度之比 (*L* / *l*<sub>cr</sub>)为1.026,实际锚固长度仅稍大于临界 锚固长度,筋材发生了拉断破坏。说明公式预测 的准确性。

采用公式(10)计算可知,CFRP筋锚固体 系中,采用130MPa的RPC作为粘结介质、筋材之 PRESTRESS TECHNOLOGY 第五届欧维姆优秀领友力论文奖奖奖论文

间设置一倍筋材直径的净距,筋材根数n以及锚 筒内壁倾角α对临界锚固长度的影响见图12。图 12显示,锚固体系的临界锚固长度随着筋材数增 加而增大,但会随着锚筒内壁倾角的增加而减 小。对于本试验中建立的9根带肋CFRP筋群锚体 系,采用130MPa的RPC作为粘结介质,筋材最小 净距为一倍筋材直径(*h*=12mm),采用未设置内 壁倾角的锚筒,临界锚固长度应当为29倍筋材直 径(348mm),而采用设置内壁倾角3°的锚筒, 临界锚固长度为25.8倍筋材直径(310mm)。

在矮寨桥实际工程中,由于岩锚的设计荷载  $T_a$ 为850kN,考虑群锚结构不均匀性造成的承载 能力折减系数 $\lambda$ 为0.8、取约2.0的安全系数,采用 9根带肋CFRP筋作为群锚体系的预应力筋。因 此,岩锚的地上段群锚体系采用130MPa的RPC作 为粘结介质,筋材间净距不小于—倍直径,锚筒 设置3°的内壁倾角,其临界锚固长度为313mm (25倍筋材直径)。考虑到制作误差可能造成 的影响,实际岩锚的地上段采用了400mm锚固 长度。



|                  |               | -, |                 | Лавка                            |                     |                |
|------------------|---------------|----|-----------------|----------------------------------|---------------------|----------------|
|                  | 试件编号/<br>筋材编号 | n  | 实际锚固长度<br>L(mm) | 预测临界锚固长度<br>l <sub>cr</sub> (mm) | L / l <sub>cr</sub> | 破坏形式           |
|                  | S1            | 1  | 300             | 365                              | 0.822               | 滑移破坏           |
| <b>送扫</b> 〉++/#- | S2            | 1  | 300             | 331 🦻                            | 0.906               | 滑移破坏           |
| 甲恨风件             | <b>S</b> 3    | 1  | 240             | 292                              | 0.821               | 滑移破坏           |
|                  | <b>S</b> 4    | 1  | 360             | 331                              | 1.088               | Tendon rupture |
|                  | 85            | 1  | 300             | 292                              | 1.026               | Tendon rupture |
|                  | GA12-9/#1     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
|                  | GA12-9/#2     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
|                  | GA12-9/#3     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
| 群锚试件             | GA129/#4      | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
| 锚固端B             | GA12-9/#5     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
|                  | GA12-9/#6     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
|                  | GA12-9/#7     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
|                  | GA12-9/#8     | 8  | 200             | 310                              | 0.644               | 滑移破坏           |
|                  | GA129/#9      | 8  | 200             | 313                              | 0.639               | 滑移破坏           |
| 群锚试件             | GA12-9/#1-8   | 8  | 360             | 310                              | 1.160               | 1              |
| 锚固端A             | GA12-9/#9     | 9  | 360             | 313                              | 1.150               | <b>最</b> 天何    |

表8 各试件筋材临界锚固长度

## 4 结论

本研究开发了一种以活性粉末混凝土作为粘 结介质锚固多束碳纤维增强塑料预应力筋的粘结 式锚固体系,制作了一组CFRP筋-锚具组装件 GA12-9,通过张拉试验研究了其力学性能,重 点研究了群锚结构的不均匀性和粘结性能,得到 了以下结论:

(1)群锚试件多根筋材的材料性质、几何 尺寸、锚固区粘结状况不同,会造成张拉荷载在 多根筋材间分配不均匀。群锚试件GA12-9的张 拉试验中观测到了这种不均匀性。通过预张拉可 以一定程度减小不均匀性。研究证明,粘结式群

231

《预定力技术》2015年第5期总第112期

锚体系采用近十根CFRP筋作为预应力筋、筋束 长度约10m,结构的不均匀系数为0.129,承载能 力折减系数为0.82;经过预张拉后结构的不均匀 系数为0.112,承载能力折减系数为0.84。

第五届欧维姆优秀预应力论文奖奖奖论文

PRESTRESS TECHNOLOGY

(2) 以超高性能水泥基材料RPC作为粘结 介质的锚固体系能够提供CFRP筋以有效锚固。 采用130MPa的RPC锚固名义直径12.6mm的带肋 CFRP筋,在单根、群锚体系中,其界面粘结强 度范围为20.3-24.83MPa,平均值为22.71MPa、 标准差为1.50MPa。

(3)本文建立了预测单根、群锚体系的界面粘结强度、临界锚固长度经验公式,并结合试验结果对公式进行了验证。以9根抗拉强度约2300MPa的带肋CFRP筋作为预应力筋,强度为130MPa的RPC作为粘结介质,筋材间净距设置一倍筋直径,采用25倍筋材直径的锚固长度能够提供预应力筋以有效锚固。

(4)本文开发的以RPC作为粘结介质的 CFRP筋锚固体系具有良好的受力性能,现已成 功应用于矮寨大桥工程岩锚地上端群锚体系。

#### 参考文献

- Erki MA and Rizkalla SH. Anchorage for FRP reinforcement. Concrete Int 1993; 15(6); 54–59.
- [2] Al-Mayah A, Soudki K, and Plumtree A. Mechanical behavior of CFRP rod anchors under tensile loading. J Compos Constr 2001; 5(2); 128-135
- [3] Schmidt JW, Bennitz A, Taljsten B and Pedersen H. Mechanical anchorage of FRP tendons-A literature review. Constr Building Mater 2012; 32; 110 - 121.
- [4] Holte LE, Dolan CW and Schmidt RJ. Epoxy socketed anchors for non-metallic prestressing tendons. Fibre-Reinforced-Plastic Reinforcement for Concrete Structures, International Symposium SP 138, American Concrete Institute, Detroit; 1993; 381-400.
- [5] Burgoyne CJ. Parafil ropes for prestressing applications. Fibre reinforced plastic (FRP) for concrete structures: Properties and applications, A Nanni, ed, Elsevier Science, New York; 1993; 333–351.
- [6] Malvar LJ and Bish J. Grip effects in tensile testing of FRP bars. Proc, 2nd Int RILEM Symp FRPRCS-2, Ghent, E & FN, London; 1995; 108–115.
- [7] Nanni A, Bakis CE, O' Neil EF and Dixon TO. Performance of FRP tendon-anchorage systems for prestressed concrete structures. PCI J 1996; 41(1); 34-44.

- [8] Sayed-Ahmed EY and Shrive NG. A new steel anchorage system for post-tensioned applications using carbon fibre reinforced plastic tendons. Can J Civ Eng 1998; 25(1); 113–127.
- [9] Campbell TI, Shrive NG, Soudki KA, Al-Mayah A, Keatley JP and Reda MM. Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons. Can J Civ Eng 2000; 27(5); 985-992.
- [10] Shaheen E and Shrive NG. Reactive Powder Concrete anchorage for post-tensioning with CFRP tendons. ACI Materials J 2006; 103(6); 436-443
- [11] Terrasi GP, Affolter C and Barbezat M. Numerical optimization of a compact and reusable pretensioning anchorage system for CFRP tendons. J Compos Constr 2011; 15(2); 126–135.
- [12] Reda Taha MM and Shrive NG. New concrete anchors for carbon fiber reinforced polymer post-tensioning tendons-Part2: Development/experimental investigation. ACI Struct J 2003; 100(1); 96-104.
- [13] Al-Mayah A, Soudki K, and Plumtree A. Development and assessment of a new CFRP rod-Anchor system for prestressed concrete. Appl Compos Mater 2006; 13(5); 321-334.
- [14] Sayed-Ahmad F, Foret G and Le Roy R. Bond between carbon .bre-reinforced polymer (CFRP) bars and ultra high performance .bre reinforced concrete (UHPFRC): Experimental study. Constr Building Mater 2011; 25(2); 479-485.
- [15] Benmokrane B. Grouted anchorages for aramid fibre reinforced plastic prestressing tendons: Discussion. Can J Civ Eng 1994; 21(4); 713-715.
- [16] Nanni A, Al-Zahrani MM, Al-Dulaijan SU, Bakis CE and Boothby TE. Bond of FRP reinforcement to concrete-experimental results. Proc, 2nd Int RILEM Symp on Non-Metallic (FRP) Reinforcement for Concrete Structures, L Taerwe, ed, RILEM, Cachan Cedex, France; 1995; 135–145.
- [17] Cosenza E, Manfredi G and Realfonzo R. Behavior and modeling of bond of FRP rebars to concrete. J Compos Constr 1997; 1(2); 40-51.
- [18] Katz A. Bond mechanism of FRP rebars to concrete. Mater Struct 1999; 32; 761–768.
- [19] Malvar LJ, Cox JV and Cochran KB. Bond between carbon fiber reinforced polymer bars and concreate 1: Experimental Study. J Compos Constr 2003; 7(2); 154–163.
- [20] Mei K. Analysis of mechanical behavior of CFRP cable bonding anchors. Bridge Construction 2007; 3; 80–83. (In Chinese)
- [21] Faoro M. Bearing and deformation behaviour of structural components with reinforcements comprising resin bounded glass fibre bars and conventional ribbed steel bars. Int Conf on Bond in concrete 1992; 145–162.
- [22] Belarbi A and Wang H. Bond Durability of FRP Bars Embedded

第五届欧维姆优秀顿友力论文奖奖奖论文

in Fiber-Reinforced Concrete. J Compos Constr 2012; 16(4); 371-380.

[23] Fang Z, Liang D and Jiang T. Experimental investigation on the anchorage performance of CFRP tendon in different bond mediums. Chn Civ Eng J 2006; 39(6); 47–51. (In Chinese)

PRESTRESS TECHNOLOGY

- [24] Jiang T and Fang Z. Theoretical and experimental investigation on anchorage performance of CFRP tendon in RPC. Engineering Mechanics 2009; 1; 166–173. (In Chinese)
- [25] Zhang B and Benmokrane B. Design and evaluation of a new bond-type anchorage system for fiber reinforced polymer tendons. Can J Civ Eng 2004; 31(1); 14–26.
- [26] Chen M, Chen G, Fang Z, Zhang K, Hu J, Liu R, et al. Largescale ground anchorage system with high performance materials. Proc, 28th Annual Int Bridge Conf, David L Lawrence Convention

## (上接第12页)

- [14] Kaveh, A., and Rahami, H. (2010a). "Block circulant matrices and applications in free vibration analysis of cyclically repetitive structures." Acta Mechanica, 217(1-2), 51-62.
- [15] Kaveh, A., and Rahami, H. (2010b). "An efficient analysis of repetitive structures generated by graphproducts." International Journal for Numerical Methods in Engineering, 84(1), 108–126.
- [16] Kaveh, A., Rahami, H., and Nikbakht, M. (2010). "Vibration analysis of regular structures by graphs products: cable networks." Computers and Structures, 88, 588-601.
- [17] Kettle, A.S.F. (1995). Symmetry and Structure, second edition. West Sussex, England: John Wiley & Sons Ltd.
- [18] Kitipornchai, S., Kang, W., Lam, H.F., and Albermani, F. (2005). "Factors affecting the design and construction of Lamella suspen-dome systems." Journal of Constructional Steel Research, 61(6), 764-785.
- [19] Luo, Y.Z., and Wang, R. (2005). "Study on dynamic characteristics and behavior of cable dome subjected to multidimensional and multi-point seismic excitations." Journal of Zhejiang University (Engineering Science), 39 (1), 39-45.
- [20] Mohan, S.J., and Pratap, R. (2004). "A natural classification of vibration modes of polygonal ducts basedon group theoretic analysis." Journal of Sound and Vibration, 269(3-5), 745-764.
- [21] Pandia Raj, P., and Guest, S.D. (2006). "Using symmetry for tensegrity form-finding." Journal of the International Association for Shell and Spatial Structures: IASS, 47 (3), December n. 152.
- [22] Pellegrino, S. (1990). "Analysis of prestressed mechanisms." International Journal of Solids Structures, 26(12), 1329–1350.
- [23] Pellegrino, S., and Calladine, C. R. (1986). "Matrix analysis of statically and kinematically indeterminate fameworks." Internarional Journal of Solids Structures, 22 (4), 409–428.
- [24] Skelton, R. E., and Oliveira C. (2009). Tensegrity systems. Springer.
- [25] Wu, M., and Sasaki, M. (2007). "Structural behaviors of an arch

Center, Pittsburgh, Pennsylvania, USA; 2011;694-699.

- [27] Richard P. Composition of Reactive Powder Concrete. Cement and Concrete Research 1995; 25; 1501–1511.
- [28] Feylessoufi A, Villieras F and Richard P. Water environment and nonstructural network in a reactive powder concrete. Cement and Concrete Composites 1996; 18(6); 203–209.
- [29] ACI 440 3R. Guide Test Methods for Fiber-Reinforced Polymer (FRP) Composites for Reinforcing or Strengthening Concrete and Masonry Structures. ACI Committee 440, American Concrete Institute; 2012.
- [30] ACI 440K. Guide test methods for fiber reinforced plastic (FRP) rods and sheets. 2001 Fall Convention, ACI Committee 440, American Concrete Institute, Dallas, Tex; 2001.

stiffened by cables. "EngineeringStructures, 29(4), 529–541.[26] Yuan, X.F., and Dong, S. L. (2003). "Integral feasible prestress

- of cable domes. "Computers and Structures, 81, 2111-2119. [27] Zhang, J. Y., Guest, S. D., and Ohsaki, M. (2009a). "Symmetric
- prismatic tensegrity structures: Part I. Configuration and stability." International Journal of Solids and Structures, 46(1), 1–14.
- [28] Zhang, J. Y., Guest, S. D., and Ohsaki, M. (2009b). "Symmetric prismatic tensegrity structures. Part II: Symmetry-adapted formulations." International Journal of Solids and Structures, 46(1), 15-30.
- [29] Zhang, X.Y., Li, G.Q., and Zhao, S.F. (2007). "Frequency techniques based cable tension estimation of beam string structures." Proceedings of International Conference on Health Monitoring of Structure, Materials and Environment (pp. 574– 578).Nanjing, China: Southeast University Press, c2007.
- [30] Zingoni, A. (1996), "An efficient computational scheme for the vibration analysis of high-tension cablenets." Journal of Sound and Vibration, 189 (1), 55-79.
- [31] Zingoni, A. (2002). "Group-theoretic applications in solid and structural mechanics: a review." Computational Structures Technology, Saxe-Coburg Publications, Stirling, pp. 283-317.
- [32] Zingoni, A. (2005). "On the symmetries and vibration modes of layered space grids." Engineering Structures, 27(4), 629– 638.
- [33] Zingoni, A. (2008). "On group-theoretic computation of natural frequencies for spring mass dynamic systems with rectilinear motion." Communications in Numerical Methods in Engineering, 24(11), 973–987.
- [34] Zingoni, A. (2009). "Group-theoretic exploitations of symmetry in computational solid and structuralmechanics." International Journal for Numerical Methods in Engineering, 79, 253–289.
- [35] Zlokovic, G.M. (1989). Group theory and G-vector spaces in structural analysis. Ellis Horwood: Chichester (UK).