

夹片式锚具锚垫板荷载传递试验介绍

-预应力锚固区安全探讨之七

裴彇'杨志'陈茜'曾利'

(1 中国建筑科学研究院 北京 100013 2 国家建筑工程质量监督检验中心 北京 1000133 杭州浙锚预应力有限公司 浙江富阳 311402)

摘 要:意大利米兰市"材料检验试验室"作为官方机构,完成了一项夹片式锚具铸造型锚垫板的荷载传递 试验,以确认此项锚垫板用于混凝土结构的负荷能力及安全性。它依据的标准是欧洲标准ETAG 013《预应 力结构后张成套组件》和它的"理解文件"(2007年12月发布)。欧洲28个成员国都执行这项标准,域外 工程单位也多有采用。我国即将实施的新版锚具国家标准(GB/T 14370)与欧洲标准基本一致。这份试验报 告对我国当前情况很有参考价值。在我国预应力行业中,多数从业人员对"荷载传递试验"还比较陌生, 不久将会遇到这种试验的工作要求。本文按试验报告原件的章节对试验过程进行了综合梳理和说明,并补 充了欧洲标准的相关要点,希望减少读者疑问。

关键词:荷载传递试验 锚垫板 混凝土棱柱体试件 预应力 锚具 DOI: 10.13211/j.cnki.pstech.2015.04.001

1 前言

国家标准《预应力筋用锚具、夹具和连接 器》(GB/T 14370)已经完成修订报批工作,可 望年内发布实施。与2007版相比,新版增加了 "锚固区传力性能的要求和试验方法"。这一部 分和欧洲标准中"荷载传递试验"基本相同。今 后凡能符合新国标的锚垫板,也能满足欧洲标准 的要求,这表明今后的锚垫板必须通过试验认可 才能用于预应力结构工程,对中国新品升级和走 向世界非常重要。国内预应力锚具生产单位、结 构设计施工和监理单位,目前对这项标准要求还 了解不多,新国标一旦发布实施,可能有许多单 位和专业人员将探寻这项技术。

为了满足这种需要,《预应力技术》2015年 第一期发表了《夹片式锚具荷载传递试验方 法》——预应力锚固区安全探讨之六。该文以 YJM15-19型锚具为例,介绍了能符合新版国标 GB/T 14370的试验方法。

许多同志都想了解欧洲国家是如何执行欧洲 标准的这项要求的,本文或可略供所求。意大利 米兰市材料检验试验室的试验报告按欧洲标准 ETAG 013进行试验,试验项目为其3种规格的锚 垫板,试验申请人为米兰市的ALGA S.P.A.。他们 的工作严谨、正规、完整,值得我们借鉴。原试 验报告为独立的3个文件,是对同一个系列三个 规格锚垫板产品提出的认可文件,本文将其合并 阐释。

试验报告中的符号定义和欧标、FIP及新版 国标相同,具体规定如下:

 F_{pk} 一预应力筋的特征极限抗拉力, $F_{pk}=A_{pk} \times f_{pk}$

F_一荷载传递试验中的实测极限荷载

A.一钢筋总截面面积

A.—荷载传递混凝土试件的横截面面积

fck---混凝土28天特征抗压强度

*f*_{ek,o}→现场施加全部预应力时混凝土的最小 特征抗压强度

*f*_{em,o}一现场施加全部预应力时混凝土的平均 抗压强度

f_{cm,e}一荷载传递试验中达到破坏时试块混凝 土的平均抗压强度

W—试件混凝土的裂缝宽度

ε─试件混凝土的应变

3

△──位移传感器测量的位移值

t—时间

2 试验目的

Alga的MG12T15、MG 19T15及MG31T15三个 规格的锚垫板,申请进行荷载传递认可试验。

3 概况

本项荷载传递试验是在米兰市官方专职人 员监督之下,在Alga试验室完成的。试验之 前,首先在监督人员在场的情况下,随机抽取 了锚垫板等试验用样品。混凝土棱柱体试件 (以下简称试件)的浇灌制作和试验全过程,

也都有官方的监督,三份试验报告由官方技术 负责人P.Colombi教授提出。

4 文件依据

(1)欧洲标准ETAG 013《预应力结构后张 成套组件》

(2) ETAG 013指南的理解文件(2007年12月)

(3) 文件LPM/PT.01.001: 《后张成套组件 初始型式试验的评估》 (4) 文件LPM/PT.02.001:《ALGA T15后 张成套组件按ETAG 013指南完成的初始型式试 验说明》

(5)文件ALGA 4287-PT5-026:《荷载传 至结构MG 12T15、MG 19T15和MG 31T15》(共 三篇)

后三份文件表明,在本次试验之前,三种规 格的锚垫板已在Alga完成了厂内型式试验。

5 试件

试件的内装锚具组件及抗裂钢筋均由Alga按 文件规定进行组装。三个试件的尺寸分别为: 385mm×385mm×770mm、440mm×440mm× 900mm及570mm×570mm×1200mm,尺寸不大。 螺旋筋、孔道及抗裂钢筋的数据均列于表1。

螺旋筋的用钢量较大,体积配筋率高达ρ,= (5.5~5.9)%,比我国常用的4%~4.5%高很 多,它的钢筋直径为φ18~φ22,比我国的粗 1~2个规格。这一因素能明显地提高试件的承载 力。三个试件的箍筋用量为(60.4~65.6)

		71 道古久			纵向钢筋尺寸及田曼	混凝土试件	
锚垫板规格	螺旋筋参数	(mm)	(mm)	(mm)	(mm)	浇灌日期 (年.月.日)	压力试块 数量
MG 12T15	钢筋φ18 圆圏φ310 螺距 60 圏数 6 ρ _v =5.5%	φ90	385×385×770 体积V _c =0.1141m ³	ϕ 8 8-375 × 375 5-272 × 272 Q=6.9kg Q/V _c =60.4	不详	2007.2.27	20块 试压龄期 2、4、7天
MG 19T15	钢筋 φ20 圆圏 φ370 螺距 60 圏数 7 ρ _v =5.7%	ф 90	440×440×900 体积V _e =0.1742m ³	ϕ 10 2-420 × 420 ϕ 8 8-420 × 420 7-300 × 300 Q=10.7kg Q/V _e =61.4	$4-\phi 10$ $4-\phi 8$ $A_{s}=0.0027A_{c}$	2007.6.12	20块 试压龄期 2、6、8天
MG 31T15	钢筋 φ 22 圆 圏 φ 430 螺距 60 圏数 8 ρ _v =5.9%	φ 125	570×570×1200 体积V _e =0.3899m ³	ϕ 10 2-550 × 550 12-390 × 390 ϕ 8 13-550 × 550 Q=25.6kg Q/V _e =65.6	$12 - \phi 8$ $4 - \phi 10$ $A_s = 0.0028A_c$	2008.12.4	15块 试压龄期 5、6、7、 8、11、18天

kg/m³,均超出ETAG 013规定的50kg/m³限量(此处m³指的是试件混凝土体积)。纵向钢筋总截面面积 A_e 没有超过欧标 $A_s \leq 0.003A_e$ 的规定(此处 A_e 为试件横截面面积)。

三个试件制作的时间虽有夏冬之分,但混凝 土的配合比相同,如表2所示。混凝土中可能还 掺入了外加剂(减水剂、早强剂等),试验报告 原件未示出。混凝土的设计标号为C30/37(圆柱 体强度/立方体强度)。试件采用木模平卧式浇灌 混凝土,如图1所示。同时制作了15~20块压力 试块,尺寸为150mm×150mm×150mm的立方 体,随试件同条件养护。试验前多次少量试压试 块以监控混凝土强度。

	表2	试件的混凝土的配合比	t
--	----	------------	---

材料	用量
骨料规格(0~3)mm	640 kg/m ³
骨料规格(3~7)mm	550 kg/m ³
骨料规格(7~15)mm	640 kg/m ³
水泥 (52.5级)	420 kg/m ³
水	$(86 \sim 110) 1 / m^3$

图1 锚具组件位置及混凝土浇灌情形

6 试验设备

Alga试验室的压力试验设备,由一个试验机 架和一台17000kN千斤顶构成。用一台PTL 50/4型 油泵形成荷载控制油路进行加荷。千斤顶的荷载 标定由米兰市官方完成。

试验前由Alga专人涂刷试件表面、粘贴位移 传感器用的测点附件,并将试件安装到试验机架 中,使试件稳座在一个干砂找平层上,以确保受 力均匀。如图2所示。从图中可见,试件的四个 侧面均安装有位移传感器,以采集循环荷载时的 应变值。位移传感器须与应变测试分析系统(例 如中国的DH 3821静态型可供参考)及电脑相 连。试验用的位移传感器都有合格标定证书。三 个试件共12个侧面的上半部的布置如图3所示。

图2 试件在试验机框架中就位的情形

图3 位移传感器布置示意图

测量裂缝宽度的仪器为"裂缝显微镜",它 是手持式的,由试验人员在规定的荷载点时,在 一条选中的主要裂缝指定位置处测量并记录下来 (中国的HC-CK 102型裂缝测宽仪可资参考)。

7 试验过程

(1)开始试验的时刻

国内外所有标准都规定试件混凝土必须在规 定强度以下进行试验。欧洲标准ETAG 013(2002 年6月)及EN 13391(2004年3月)规定,在最后 的破坏试验时,试件混凝土的平均抗压强度f_{em,e} 应满足式(1)。

 $f_{\rm cm\,e} \leqslant f_{\rm cm,o} \tag{1}$

以往,预应力工程经常提前进行预应力张 拉,所以FIP、欧标、美标都规定混凝土尚未达 到设计标号时即要求进行荷载传递试验。这就造 成试验时一旦试件的强度超过规定值,试件只能 作废的尴尬局面。

2007年12月及2008年7月,ETAG 013两次发 布"理解文件",试验时试件强度可在达到设计 标号之上再放宽3MPa(以圆柱体强度计),即 满足式(2):

$$f_{\rm cme} \leq f_{\rm cme} + 3 \rm{MPa} \tag{2}$$

而且欧标规定的混凝土平均强度高于特征强度的幅度为8MPa,比FIP规定的5MPa更大,即满足式(3);

$$f_{\rm cm,o} = f_{\rm ck,o} + 8 M Pa \tag{3}$$

这就给试验操作人员提供了较大空间,试件 一般不会超过规定强度。中国新版国标按中国规 定的两项强度幅宽再加4MPa作为试件强度的限 值,也为试验提供了方便,即满足式(4),式 中强度以立方体强度计。

$$f_{\rm cm,e} \leq 1.15 f_{\rm ck,o} + 4 \rm{MPa} \tag{4}$$

三个试件的混凝土强度实测值及有关规定 如表3所示。试验时三个试件的混凝土龄期分 别是7天、8天和18天,强度均符合规定。其 中,MG 19T15的强度超过ETAG 013的标准 (40.86 MPa > 38MPa),但未超过"理解文件" 再加3MPa(共41MPa)的规定。

表3	混凝土试件的强度规定及实测值
~~~	

	试验日期 (年月日)	— 设计 标号 <i>f</i> _{ck}	混凝土强度(MPa)					
1-11-1-1-			施加预应力时		荷载传递试验时			
锚垫板 规格			特征强度 f _{ek,o}	平均强度 f _{cm,o}	平均强度限值 f _{cm,e} ≤	立方试块实测 强度平均值 <i>R_{cme}</i>	换算成圆柱体 实测平均值 f _{cm.e}	
MG 12T15	2007.3.6	C30/37 ^[1]	30	$f_{ek,o}$ +8 ^[2] =38	$f_{cm,o}+3^{[3]}=41$	42.78	35.5 ^[4] < 38 < 41可	
MG 19T15	2007.6.20	C30/37	30	$f_{ m ck,o}$ +8=38	$f_{ m cm,o}$ +3=41	49.23	40.86 > 38 < 41可	
MG 31T15	2008.12.22	C30/37	30	$f_{\rm ck,o}$ +8=38	$f_{cm,o}+3=41$	43.18	35.84 < 38 < 41可	

注: [1] 式中30为混凝土圆柱体强度, 37为立方体强度; 对应值为欧洲模式规范规定;

[2] 欧洲标准ETAG 013及EN 13391均规定 fek. = fem. - 8MPa;

```
FIP1993"建议"规定f<sub>ck.o</sub>=f<sub>cm.o</sub>-5MPa;
```

中国标准《混凝土强度检验评定标准》(GB/T 50107~2010)对C60以下混凝土规定f_{en.o}=1.15 f_{ck.o};

[3] ETAG 013的理解文件(2007年12月)允许试验时混凝土试件强度 $f_{em,e} \leq f_{em,o}+3$ MPa(以圆柱体强度计);

中国新版GB/T 14370允许 $f_{em,e} \leq 1.15 f_{ck,o} + 4$ MPa(以立方体强度计)。

(2)加荷

荷载数量是根据各锚具适用的预应力筋特 征抗拉力 $F_{pk}$ 决定的。Alga的15系列锚具能适用 于 $\phi$ 15.24mm及 $\phi$ 15.7mm的两种钢绞线,试验中 选取抗拉力较大的 $\phi$ 15.7mm的 $F_{pk}$ 值。当特征强 度为1860MPa级时,单根钢绞线的特征极限抗 拉力为279kN。三种试件的钢绞线根数分别为 12根、19根及31根,整束钢绞线的 $F_{pk}$ 分别为 3348kN、5301kN及8649kN。

加荷分两阶段,首先分4级加荷:0.2F_{pk}、 0.4F_{pk}、0.6F_{pk}及0.8F_{pk}。0.8F_{pk}为最大荷载(上 限)。然后进行第2加荷阶段,即循环荷载阶 段:自0.8F_{pk}慢速直降至0.12F_{pk},此为最小荷载 (下限)。稍停,再直升至0.8*F*_{pk}。至此完成第1 循环。如此共进行n次循环,n≥10次,直至裂缝 宽度增量及应变增量趋于稳定为止。稳定的判别 标准,欧洲标准有规定(后面将论及)。最后, 将试件加荷到破坏。加荷程序如图4所示。

Alga三个试件的加荷都编成程序控制,图5 为仪器绘出的MG 12T15的荷载--试件试验记录, 全程不超过1.5小时。根据我们的经验,因为裂缝 测量是人工操作,进程中或需各种观察分析和讨 论,试验中有可能需要持荷,所以用手动加荷控 制比较方便。

(3)测量

测量,即试验值的采集。按图4的负荷点1、



PRESTRESS TECHNOLOGY

研究应用

- 值;最后的破坏荷载值也必须记录。 试件裂缝及破坏形态应予拍照、记录、描述。 测量记录是认可论述和结论的依据。
- 8 试验结果

(1)裂缝宽度及稳定性的规定

裂缝的形成、宽度及扩展,在欧洲标准中非 常重要,裂缝宽度值的规定如下:

a)在荷载第1次达到最大荷载0.8F_{pk}时
 (即图4中的荷载点4),裂缝宽度应满足
 W≤0.15mm;

b)在荷载最后一次达到最小荷载0.12*F*_{pk}时 (图4之n-1点),裂缝宽度W≤0.15mm;

c)在最后一次达到最大荷载0.8F_{pk}时(图4
 之n点),裂缝宽度应满足W≤0.25mm。

裂缝宽度在循环荷载期间的扩展速度必须 减慢,欧标对其稳定性要求为:裂缝宽度满足 式(5)时即可认为裂缝扩展已经稳定。

 $W_{n-}W_{n-4} \leq \frac{1}{3}(W_{n-4}-W_{0})$  (5) 式中W的下标为图4之荷载点。

(2)裂缝测量

测量裂缝宽度的"裂缝显微镜"为手持式仪器,在每个荷载点时进行人工测量,并将读数在纸质记录表格中记载下来。较新型的裂缝测宽仪可将读数保存到内存SD卡上,它也可以拍照并保存图像。

MG 31T15试件的裂缝记录如表4所示。三个 试件的裂缝宽度实测值没有超过欧洲标准的规 定,宽度增量都符合稳定性要求(MG 12T15试件 未示出实测值),详见表4。

通常在第3级荷载时可能出现第1条裂缝。

表4

裂缝宽度记录表(试件: MG 31T15)

测量次数 (按加荷程序)	荷载循环次数	荷载(kN)	裂缝宽度(mm) (A側面)
0	1	0	无可见裂缝
1	1	1729.8	无可见裂缝
2	1	3459.6	无可见裂缝
3	1	5189.4	_
4	1	6919.2	0.07
5	1	1037.88	_
6	1	6919.2	0.08
7	2	1037.88	_
8	2	6919.1	0.09
9	3	1037.88	_
10	3	6919.1	0.10
11	4	1037.88	-
12	4	6919.2	0.09
13	5	1037.88	_
14	5	6919.2	0.10
15	6	1037.88	_
16	6	6919.2	0.10
17	7	1037.88	
18	7	6919.2	0.10
19	8	1037.88	_
20	8	6919.1	0.10
21	9	1037.88	_
22	9	6919.2	0.10
23	10	1037.88	_
24	10	6919.2	0.10
25	11	1037.88	-
26	11	6919.2	0.10
27	12	1037.88	_
28	12	6919.2	0.10
29	13	1037.88	-
30	13	6919.2	0.10
31	14	1037.88	0.06
32	14	6919.2	0.10

7

			10 11			47		
	荷载	裂	缝宽度 W (n	nm)	循环荷载上限	破坏荷载	$F_{\rm u}$ (kN)	
锚垫板 规格	(预应力筋极 限抗拉力) F _{pk} (kN)	第1次0.8F _{pk} 时限值: ≼0.15	最后循环 0.12F _{pk} 时 限值: ≤0.15	最后循环 0.8F _{pk} 时 限值: ≤0.25	时裂缝的稳定 性要求 (Wn-Wn-4≤ <u>1</u> ₃ (Wn-4-W0)	要求: $F_{u} \ge 1.1 F_{pk} \frac{f_{cm,e}}{f_{cm,o}}$	实测值	— 破坏 情况
MG 12T15	3348			-		3440.51	4106 可	锚垫板未开裂
GM 19T15	5301	0.12	0.10	0.20	0 < 0.08/3	6270	6388 可	锚垫板未开裂稍下沉
MG 31T15	8649	0.07	0.06	0.10	0 < 0.03/3	8973.34	10454 可	锚垫板未开裂

表5 混凝土试件的裂缝及破坏荷载

(3) 应变稳定性的规定

(PRESTRESS TECHNOLOGY)

研究应用

欧标规定试件受循环荷载时,4个侧面的纵 向和横向应变增量应趋于变小,当满足式(6) 时即可认为应变已经稳定:

$$\varepsilon_n - \varepsilon_{n-4} \leq \frac{1}{3} (\varepsilon_{n-4} - \varepsilon_0) \tag{6}$$

式中*ε*的下标为图4之荷载点。试验中用位移传感 器测量其标距点的位移,标距长度无严格规定, 约为试件边长的(40~80)%,用位移差值判定 位移的稳定性,可与应变判定相同。欧标对应变 无绝对值规定。

表6



图6 MG 12T15试件C侧面3个位移传感器的实测记录 混凝土试件的应变  $(\varepsilon_t, \varepsilon_v)$  试验结果

		位移传感器读数△ ^[1] (mm)						
锚垫板	荷载循环	 C侧面 ^[2]						
规格	次数及判定	横向,上	横向,下	竖向	横向,上	横向,下	竖向	
	1	0.1072	0.0586	0.1248	0.1190	0.0749	0.1486	
MC 10T15	10	0.1272	0.0663	0.1888	0.1482	0.0863	0.1858	
WIG 12115	14	0.1315	0.0685	0.2023	0.1539	0.0873	0.1877	
	判定[3]	च	可	可	म	म	可	
			B侧面			C侧面		
		横向,上	横向,下	竖向	横向,上	横向,下	竖向	
MC 10715	1	0.3861	0.2168	0.2180	0.2409	0.3407	0.2218	
	10	0.5680	0.4348	0.2390	0.4112	0.4278	0.2279	
MG 19115	14	0.5997	0.4712	0.2415	0.4401	0.4473	0.2229	
	判定	व	ন্	可	町,	可	可	
A侧面			A侧面			D側面		
		横向,上	横向,下	竖向	横向,上	横向,下	竖向	
	1	0.2005	0.1050	0.3201	0.2178	0.1012	0.4634	
MC 31T15	10	0.2983	0.1400	0.3217	0.2858	0.1372	0.4680	
MO 51115	14	0.3214	0.1429	0.3222	0.2955	0.1474	0.4674	
	判定	可	म]	म	मि	可	म्	

注: [1]试验中位移传感器的标距固定,可以用实测位移( $\Delta$ )进行差值比较,以判定应变( $\varepsilon$ )的稳定性; [2]ETAG 013规定,可在试件4个侧面中任选2个侧面的测量值进行判定; [3]按ETAG 013的判别式此处应为:  $\epsilon_{14}-\epsilon_{10} \leq \frac{1}{3}(\epsilon_{10}-\epsilon_{1})$ 

(下转第15页)

- (PRESTRESS TECHNOLOGY) 研究虚風



- [35] 刘秀成,吴斌,何存富, et al. 兆赫兹磁致伸缩超声导波 管道检测系统的研制[J]. 失效分析与预防, 2013, 8(1): 1-5.
- [36] 钟恒. 基于磁致伸缩导波的桥梁拉索锚固系统无损检测试 验[D]. 重庆交通大学, 2013.
- [37] 林阳子,游棉州,李春早, et al. 桥梁索杆内部锈蚀断 丝无损检测技术运用[J]. 公路交通科技:应用技术版, 2013, (9).
- [38] 段鸿杰,林鸣,李文波.基于磁致伸缩技术的吊杆检测应 用研究[J]. 湖南交通科技,2014,(1).
- [39] Zhang D, Zhou Z, Sun J, et al. A Magnetostrictive Guided-Wave Nondestructive Testing Method With Multifrequency Excitation Pulse Signal[J]. Instrumentation and Measurement, IEEE Transactions on, 2014, 63(12): 3058-3066.
- [40] 武新军,徐江,沈功田. 非接触式磁致伸缩导波管道无损 检测系统的研制[J]. 无损检测, 2010: 166-170.
- [41] 何存富,黄垚,刘增华.小型超声导波管道检测系统的研 究和开发[J].测控技术,2008,27(1):33-35.
- [42] 陈福梁. 基于磁致伸缩效应的导波管道缺陷检测系统设计 研究[D]. 浙江大学, 2014.
- [43] Kim Y Y, Kwon Y E. Review of Magnetostrictive Patch Transducers and Applications in Ultrasonic Nondestructive

#### (上接第8页)

每个试件有A、B、C、D4个侧面。每个侧面 上的二横一竖传感器,在应变分析系统上的连线 编成一组。图6为MG 12T15试件C侧面上的3个仪 器的实测记录,图中时间坐标与图4的荷载程 序同步。Alga的三份试验报告共给出了12幅位 移图。

按照欧标的要求,试验中只需n次循环荷载 上限(0.8 $F_{pk}$ )时的位移值( $\Delta$ ),就可以做出 应变( $\varepsilon$ )稳定性的判定。三个试件的应变( $\varepsilon_t$ 、  $\varepsilon_v$ )试验结果列于表6,完全满足要求。

(4)破坏荷载

试件经n次循环荷载后,应缓慢增加荷载, 直至破坏。欧标要求试件的破坏荷载(F_u)不应 小于预应力筋特征抗拉力的1.1倍,并乘以修正系 数,即满足式(7):

$$F_{\rm u} \ge 1.1 F_{\rm pk} \frac{f_{\rm cm,e}}{f_{\rm cm,o}} \tag{7}$$

式中的 $f_{cme}/f_{cme}$ 为修正系数,它考虑了试验时试

Testing of Waveguides[J]. Ultrasonics, 2015.

- [44] Kwon Y E, Kim H W, Kim Y Y. High-frequency lowest torsional wave mode ultrasonic inspection using a necked pipe waveguide unit[J]. Ultrasonics, 2015.
- [45] Kharrat M, Gaillet L. Non-destructive evaluation of anchorage zones by ultrasonics techniques[J]. Ultrasonics, 2015, 61: 52-61.
- [46] 丁秀莉,武新军,孙鹏飞. 开放磁路式磁致伸缩导波传感 器原理的实验研究[J]. 传感器与微系统, 2014, 33(12).
- [47] Xu J, Wu X, Zhang Y, et al. Research on one-direction receiving method of guided waves based on magnetostrictive effect[C].
  2015 International Conference on Mechatronics, Electronic, Industrial and Control Engineering (MEIC-15), 2015.
- [48] 孔东颖. 管道磁致伸缩导波检测周向传感方法研究[D]. 华中科技大学, 2013.
- [49] Kim H W, Lee J K, Kim Y Y. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection[J]. Ultrasonics, 2013, 53(2): 423[]431.
- [50] 刘秀成,吴斌,何存富.磁致伸缩与磁弹一体化传感器的 研制[J].机械工程学报,2013,49(22):46-52.
- [51] 刘秀成. 磁致伸缩与磁弹一体化传感技术及其钢索检测应 用研究[D]. 北京工业大学, 2013.

件混凝土的实际强度影响,此系数在数值1左右 小幅度摆动。

三个试件的实测破坏值列于表5,试件破坏 后,从照片可见锚垫板没有开裂破损。

#### 9 结论

(1)3个试件的破坏荷载都高于要求限值(见表5),锚垫板没有断裂;

(2)在3个荷载控制点时,3个试件的裂缝 宽度都未超过裂缝宽度限值(见表5):荷载上 限第一次达到0.08 *F*_{pk}时和荷载下限最后一次达到 0.12 *F*_{pk}时,裂缝宽度都没有超过0.15mm;荷载上 限最后一次达到0.8 *F*_{pk}时,裂缝宽度没有超过 0.25mm;

(3)裂缝宽度的读数,直到循环荷载的最 后阶段都是稳定的;

(4) 混凝土试件的横向和竖向变形读数, 直到循环荷载之最后阶段都是稳定的。