U型预应力锚固体系 在电站大坝闸墩上的应用

甘国荣 唐小萍

(柳州欧维姆机械股份有限公司 柳州 545005)

摘 要:在高库大坝建设中,闸室弧门均存在很大的推力,为改善闸墩的不利应力状态,采用OVM.U型预应力 锚固体系进行加固,具有显著的效果。本文结合工程应用介绍了该体系的结构特点和优越性,对我国以后的 水电大坝建设具有直接借鉴的现实意义。

关键词:预应力技术 锚索 闸墩 分丝管

1 概述

随着高强低松驰钢绞线及相关配套锚具、张拉机具的成熟,预应力锚固技术在我国的水工结构中得到广泛应用。尤其是在我国的高库大坝建设中,闸室弧门推力大都超过25000kN,为抵消平衡弧门推力,改善闸墩的不利应力状态,采用了主次锚索的预应力锚固结构。

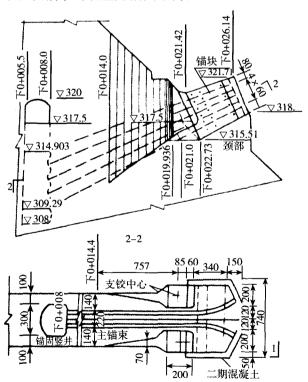


图1 主锚索采用对穿索形式

主锚索采用对穿大吨位锚索,在立面上呈辐射状,沿弧门推力作用线对称布置,在锚块内布

置有水平次锚索,以抵消锚块内的水平拉应力。为安装和施工方便,墩体内需预留施工槽和竖井,在适当时候回填低热微膨胀混凝土。闸墩需预留槽对墩体削弱较大,施工时极易发生贯穿性裂缝,而预留槽大多位于溢洪时水流脉动区,若预留槽混凝土回填质量难以保证,将给闸墩安全造成隐患。

2 闸墩U型主锚索的特点

由于在闸墩布置直线形对穿锚索要求在坝体部分设置竖井或廊道,不但削弱坝体结构,并使坝体内应力复杂化,加大了施工难度。为了解决上述问题,二滩电站闸墩主锚索首次采用了U型锚索结构,如图2所示。U型锚索在坝体内的锚固只需埋设U型钢管成孔,基本不削弱坝体结构,而且U型段周围的应力分布比直线形对穿锚索要均匀,对坝体应力有利。

我们在研究有关单位的使用过程后,发现二滩电站使用的U型锚索存在很多施工难点,施加的预应力不易保证:

- (1)U型索的弧形段采用大钢管,为整体穿索,施工难度极大;
- (2)钢绞线在钢管内相互打绞,弧形段下层钢绞线受力时受到上层及相邻钢绞线的挤压,受力情况很差。
- (3)钢管内灌浆情况难以检查,钢绞线的防腐质量难以保证。
- (4)钢管与混凝土接触面过小,带来管下 应力集中,易引起混凝土开裂。

(5)大钢管弧形段的曲率过小,影响了U型 锚索的进一步应用。

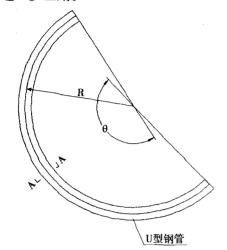


图2 普通U型锚索U形段

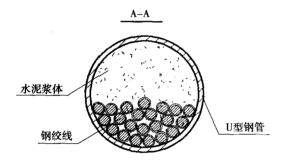


图3 普通U型锚索U形段载面

分析了二滩电站普通U型锚索的成功经验和 具体的不足,我公司推出了新型的U-I型预应力 锚固体系。

U-I型预应力锚固体系由U型段、直线段和外锚头组成,如图4、图5。U型段由弧形段和直线导向段组成,为多根分丝钢管组焊形成分丝管座,与预埋钢管一起预埋形成孔道。分丝钢管根据外端面锚具和其受力特征布置孔位,其所用钢绞线不是整束布置在同一管中,而是布置在分别对应的分丝钢管中,形成钢绞线与分丝钢管的一一对应关系,钢绞线之间相互分离,互不干涉,为独立受力单元。锚具孔位布置与分丝管座的分丝钢管排布一致。

采用U-I型管座的U型预应力锚固体系具有如下特点:

(1)每根钢绞线对应其专用管道,单根穿索,施工简便;

- (2)钢绞线之间不存在打绞和挤压现象, 受力良好;
- (3)分丝钢管内无粘结钢绞线PE不剥除, 钢绞线在管内防腐良好;
- (4)分丝管座起到分散、均匀传递荷载的作用,能有效消除分丝管座弧型部混凝土的应力集中:
- (5)采用多根分丝钢管组焊形成U型分丝 管座,可适应曲率范围广,能满足多数电站建 设需要;
- (6) U型分丝管座为预埋安装,不需预留施工槽,对坝体结构有利。

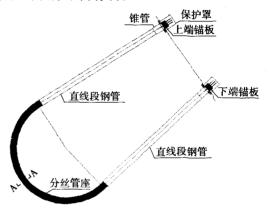


图4 U-I型预应力锚固体系

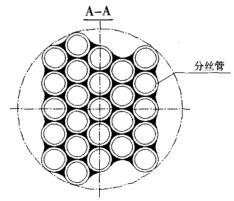


图5 U-I型U形段管座截面

3 U型管座局部模型计算

本模型采用ANSYS有限元分析程序,分丝管 采用SHELL63模拟,分丝管之间的焊接采用实体单 元模拟,弹件模量取为2.1e5MPa,泊松比取为0.3。

在各级荷载作用下,管座分丝管全部受压,分丝管各点处于线弹性受力工作范围,圆弧内侧分丝管受力大于圆弧外侧分丝管。分丝

管内侧最大压应力为-39.27MPa,其余分丝管受力在-3.78~-32.3MPa之间,应力水平较低,远小于Q235钢材的容许应力145MPa。这说明在最大径向分力作用下,不会造成分丝管的过大变形,分丝管座的结构受力是安全的。管座应力情况见图6。

图6 管座局部应力云图

4 工程应用

构皮滩水电站位于贵州省中部余庆县境内, 乌江干流中游河段上,与贵阳市直线距离约 135km,上距乌江渡水电站137km,下至拟建思 林水电站89km,距乌江河口涪陵市455km。

坝址控制流域面积43250km²,占全流域的49.2%。枢纽开发任务为:以发电为主,兼顾航运、防洪和水产养殖等综合利用。

水库正常蓄水位630m,相应总库容55.62亿m³,调节库容31.5亿m³,属年调节水库。坝型为混凝土双曲拱坝,坝顶高程640.5m,最大坝高232.5m,坝顶弧长557.11m。

构皮滩水电站上、下游最大水头差150m,大坝设计、校核泄洪量分别达24016 m³/s和28807m³/s,泄洪功率分别达34940MW和41690MW左右,这在国内外均处于领先;加之河谷狭窄,

a 主锚索安装位置示意图

地形地质条件复杂,消能区尾部及下游两岸与河床为粘土岩等软岩,泄洪与消能防冲设计难度较大。通过对泄洪布置、消能效果及工程量等多方面综合比较,确定采用6个表孔和7个中孔泄洪,坝下设置水垫塘消能布置方案。构皮滩水电站施工图见图7。

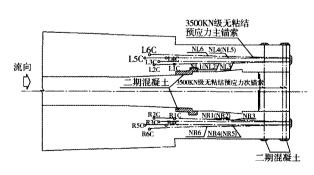



图7 构皮滩水电站施工图

构皮滩水电站中孔闸墩预应力主锚索共采用84套U-I型预应力锚固体系,主锚索工作吨位3500kN,由23根φ15.24钢绞线组成,抗拉强度为1860MPa。锚索安装如图8。其U型预应力锚固体系构成为:φ219×6直线段钢管和25孔的分丝管座连接成孔,其中23孔用于穿索,2孔用于灌浆,如图5所示。锚索主要技术参考数见表1。

b 1-1截面主锚索安装示意图

图8 构皮滩水电站主锚索安装示意图

表1 构皮滩水电站主锚索主要技术参数表

编号	分丝管座半径 (cm)	分丝管座长度 (m)	圆心角	总长度 (m)
NL1	210	13.75	187.2	61.64
NL2	211	13.80	187.2	61.91
NL3	317	21.13	190.8	69.13
NL4	223	14.58	187.2	66.47
NL5	224	14.62	187.2	66.73
NL6	336	22.39	190.8	74.39
NR1	210	13.75	187.2	61.64
NR2	211	13.80	187.2	61.91
NR3	317	21.13	190.8	69.13
NR4	223	14.58	187.2	66.47
NR5	224	14.62	187.2	66.73
NR6	336	22.39	190.8	74.39

主锚索采用单根穿索方法穿索,在预埋分丝管座之前,每根分丝管都先穿入 ф 8 牵引钢丝绳,与管座同时预埋,并在预埋直线段钢管时,穿入直线段钢管,从张拉端引出,保证牵引钢丝绳在钢管内的顺直,避免打绞。穿索时按从下到上的排列顺序,通过CKQ穿孔器把钢绞线依次穿入上端锚板、上直线段钢管、分丝管座、下直线段钢管、下端锚板,每穿完一根钢绞线后将其预拉绷直,以防止与其它钢铰线打绞。分丝管座施工图见图9。

a 6#中孔闸墩分丝管座安装 b 6#中孔闸墩分丝管座预埋 图9 构皮滩水电站U型分丝管座施工图

闸墩混凝土强度达到设计强度80%后方可进行锚索张拉,张拉控制应力为1196MPa,单根钢绞线最大张拉力167.4kN,整根锚索最大张拉力3850kN。张拉锁定后,采用真空辅助灌浆工艺灌浆,灌浆浆液采用M35水泥浆,水泥采用42.5级普通硅酸盐水泥。

5 存在问题分析

从构皮滩水电站应用的情况来看,预埋、 穿索、张拉、灌浆都较为顺利,预埋和穿索工 艺要求现场管理严格,工序的衔接紧密,对施 工要求较高。如采用U-II型预应力锚固体系, 将直线段钢管改为直线管座,如图10,即直线 段钢绞线安装在相对应的分丝管内,穿索时不 再需要牵引绳,简化了施工工艺,而且锚索张 拉锁定后,在以后的运营中,将需要更换的钢 绞线去应力后,可人力单根更换,其锚固体系 和防腐体系不变。

图10 U-II型预应力锚固体系

6 结论

- (1)电站大坝闸墩采用U型预应力锚固体系的应力分布比直线形对穿锚索要均匀,对坝体应力有利。
- (2)U-I型预应力锚固体系结构设计合理, 施工简便。
- (3)如采用U-II型预应力锚固体系,穿索将更方便,并可实现单根换索。