

浅谈预应力设备的标定

陈新洋 赵维春

(1 盐城市水利建筑工程处 江苏盐城 224002 2 大丰丰鹿建材有限公司 江苏大丰 224100)

摘 要:本文介绍了预应力设备标定的方法,对标定存在的相关问题进行了讨论。 关键词: 预应力设备 标定 回归分析 内插法取值

预应力施工前,我们都要对张拉设备、油泵 及对应的压力表配套校验(标定),其目的是为了 得出张拉力与压力表之间的关系曲线。张拉设备 在校验前,应进行全面的检查:

1 设备校验前的检查

1.1 千斤顶的检查

- (1)千斤顶试运行正常,其油缸无拉毛刮伤 现象。
- (2)千斤顶的密封圈的检查,无老化受 损现象。

1.2 油泵的检查

- (1)对油箱的油液量进行检查,不得低于规定下限。
- (2)油品质的检查:油液50℃运动粘度为 12~60mm²/s、杂质直径不大于137μm、具有一定 的防锈能力,根据气温及使用条件选用不同牌号 油。通常用20号机械油,冬季选用10号机械油。
- (3)启动后,观察电机要平稳,无大的震动和噪音。
 - (4)运转正常后,检查空载流量正常。
- (5)检验合格后,可堵住排油口,进行满 载检验,升至公称压力2分钟,观察有无渗漏及 表针摆动情况。

1.3 压力表的检查

选用的压力表精度不得低于1.5级,量程为最大使用压力(1.3~1.6)倍为宜。使用前先送到有资质的计量检定机构校验,合格后方可使用。

2 张拉设备的校验准备

2.1 检测单位资质的检查

应对千斤顶标定的检测单位的检测资质进行 相应的检查。

2.2 张拉设备的校验准备

按液压系统要求,连接好高压油泵和千斤顶,启动油泵,当油泵回油管无气泡,排油正常后,供油使千斤顶往复运动,排除油缸内空气,并检查油路系统,不得有渗漏,千斤顶空载启动油压应小于额定油压4%,千斤顶在空载运行时无爬行、突进等不正常现象。

3 张拉设备的校验

- (1)张拉设备的校验通常有测力传感器和压力机二种方法。标定时,将千斤顶放在压力机上并对准中心。开动油泵向千斤顶供油,使活塞运行到全部行程的1/3左右,开动压力机,使压板与千斤顶接触。使压力机处于工作状态时,再开动油泵,使千斤顶顶压压力机,分级记录压力机吨位和对应的压力表读数,重复三次,取其平均值,即可绘出油压与吨位的标定曲线,供张拉时使用。
- (2) 张拉设备使用期间的校验期限应视机 具设备的情况确定,当预应力筋张拉过程中,遇到 下列情况之一,需要重新校验:
 - ① 千斤顶使用超过6个月或200次;
 - ② 油压表指针不能退回零点, 更换新表:
- ③ 千斤顶、油压表、油管进行过更换或维修 后:
 - ④ 张拉时出现异常情况而又找不到原因时;
 - ⑤ 停放三个月不用后、重新使用之前;
 - ⑥ 油压表受到碰撞或出现失灵现象;

下面是一份某试验室的千斤顶标定报告,通过分析提出一些观点,具体容如下(见表1):

表1	千斤顶标定试验报告
नक्टा	T / L J W W/W VE IXL 3W TIX (3)

检定单位	柳州欧维姆! 技术中心试!	投份有限公司 验室	时间:	2005-12-2
千斤顶编号		00 (005150#)	标准计量 器具编号:	CL-YB-M7MN 传感器(02071)
压力表	6034#		机油牌号:	32#
TE TIMPO	千斤顶主动加载			
压力(MPs)	1	2	3	平均值
5	219.2	219.3	221.5	220.0
10	446.1	448.7	447.7	447.5
15	675.7	675	675.3	675.3
20	901.7	901.8	902,3	901.9
25	1127.7	1129,3	1128,9	1128.6
30	1355.6	1356.8	1356.4	1356,3
35	1583.2	1584,2	1585.6	1584.3
40	1812.2	1815.9	1815.3	1814.5
45	2050.0	2054,9	2054,0	2053.0
50	2284.2	2285,5	2289,3	2286,3
54	2477.5	2475.3	2477.3	2476.7

我们对作用力及压力表读数的标定结果用数 理统计的方法进行分析,采用回归分析中的最小 二乘法。具体数据分析如下(见表2):

表2 数据分析表

序号	X	Y	X ²	Y ²	XY
1	5	220.0	25	48400	0,0011
2	10	447.5	100	200256.3	4475.0
3	15	675.3	225	456030.1	10129.5
4	20	901.9	400	813423.6	18038.0
5	25	1128.6	625	1273738.0	28215.0
6	30	1356.3	900	1839549.7	40689.0
7	35	1584.3	1225	2510006.5	55450.5
8	40	1814.5	1600	3292410.3	72580.0
9	45	2053.0	2025	4214809.0	92385.0
10	50	2286.3	2500	5227167.7	114315.0
11	54	2476.7	2916	6134042.9	133741.8
Σ	329	14944.4	12541	26009834.1	571118.8

 $(\sum X)^2/n=9480.1$

 $(\sum Y)^2/n=20303190.1$

 $\Sigma XY = 571118.8$

 $(\sum X)(\sum Y)/n=4916707.6$

 $L_{xx} = \sum X^2 - (\sum X)^2 / n = 2700.9$

 $L_{YY} = \sum Y^2 - (\sum Y)^2 / n = 5706644.0$

 $L_{XY} = \sum XY - (\sum X)(\sum Y)/n = 124145.4$

 $b=L_{xy}/L_{xy}=45.96$

 $a=\overline{Y}-\overline{b}X$ =(14944.4/11)-45.96*329/11=-16.04 $r=L_{XY}/SQR(L_{XX}*L_{YY})$ =0.9999 所以,预应力值与油压表的对应关系式为 $F=a+bx=45.96\,\sigma$ -16.04 r=0.9999为线性相关 通过分析,解答下面几个问题:

1) 为什么要进行千斤顶标定?

由于每台千斤顶液压配合面实际尺寸和表面粗糙度不同,密封圈和防尘圈松紧程度不同,造成千斤顶内摩阻力不同,而且,摩阻要随油压高低、使用时间的变化而变化。所以,千斤顶要和工程中使用的油压表、油管等一起进行配套标定。

2)a、b的几何意义是什么?

我们知道,对于液压设备,其千斤顶的油压应力值应等于作用力除以活塞面积,对于上述标定的穿心式YCW250型千斤顶,其活塞环外的密封圈直径为0.29m,活塞环内径为0.16m,其活塞的有效面积为1/4πD² – 1/4πd² = 4.592*10⁻²m²,则b的理论值为45.92,与标定值45.96相差0.08%,系数a的几何意义为活塞的摩阻力,活塞与缸体之间存在着摩阻力,只有当作用力大于摩阻力时,活塞才能克服摩阻力而移动。

3) 摩擦力有什么特点?

通过对摩擦力进行研究,我们得出如下结论:

① 摩擦力a的方向与作用力相反,符号应为 负号。

② 摩擦力a开始随着作用力的增加而增加, 达到一定时其值相对稳定,参见表3、图1。

		_	表3
油表读数(MPa)	千斤顶标定值 (kN)	千斤顶理论 作用力(kN)	摩阻力(kN)
1)	2	3=45.92*1	4=3-2
5	220.0	229.6	9.6
10	447.5	459.2	11.7
15	675.3	688.8	13.5
20	901.9	918.4	16.5
25	1128.6	1148.0	19.4
30	1356.3	1377.6	21.3
35	1584.3	1607.2	22.9
40	1814.5	1836.8	22.3

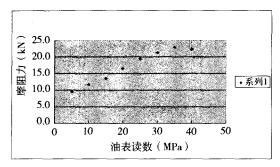


图1 摩阻力曲线图

4)有些标定报告中出现(0,0)点,是否正确?

在有的检测单位的报告中,常见到(0,0)点。意思是:未标定的起始状态千斤顶的作用力为0,压力表的读数为0。实际上,这样的理解是错误的。通过数据的回归分析得出的回归公式y=a+bx中可以看出,回归曲线是不通过(0,0),而应在直角坐标系中的该点的下方(0,a)点。

5)有的检测单位配有专门的标定油泵供检测用,是否合理?

(上接第14页)

《公路桥梁抗风设计规范》(JTG / TD60-01-2004)关于不同高度处风速换算的方法,桥址地区10m高度处100年一遇10min平均最大风速即基本风速为 U_{10} = $0.836U_{20}$ =25.9m / s 。

根据桥址附近的地貌特征,地表粗糙度偏于安全地按 II 类地区取用。大桥主梁(平均高度)位于地面以上12m左右,按《公路桥梁抗风设计规范》(JTG/TD60-0l-2004)的规定,主梁在成桥状态下的设计基准风速为:

 $U_d = K_1 U_{10} = 1.04 \times 25.9 = 26.9 \text{ m} / \text{ s}$

又根据《公路桥梁抗风设计规范》(JTG/TD60-01-2004)的规定,主梁的颤振检验风速为:

 $[Ucr]=1.2\mu_f U_d$

其中,1.2为综合安全系数,μ₁为考虑风的脉动特性以及空间相关特性影响的修正系数,根据跨度和地表粗糙度类别应取为1.33,故成桥状态主梁的颤振检验风速为:

 $[Uer]=1.2 \times 1.33 \times 26.9=42.9 \text{m} / \text{s}$

4.2 主梁颤振临界风速估算

对于主梁的弯扭耦合颤振, 其临界风速根据

我们知道:标定结果除了与千斤顶的活塞面积有关外,还与密封圈的新旧松紧程度有关、液压系统中油的粘度、标定过程中的环境温度有关等。如果检测单位提供的油泵的液压油与施工中的液压油不同的话,其响应的结果应该是不同的。

6)预应力施工中的张拉应力的取值应采用 内插法还是用回归公式取值?

预应力施工中,张拉应力的取值应采用内插 法取值,而不应该采用回归公式取值。因为:

①标定结果的数据整体上呈回归直线,但针 对某一些点时,其是有波动的。

②我们知道回归公式的推导是建立在摩擦力假定为定值的情况下,而实际上摩擦力不是定值,而是随作用力的增加而增加,在一定的范围内,摩擦系数为相对定值。严格来说,回归公式是不准确的。所以,在预应力施工中,张拉应力的取值应采用内插法取值,而不应该采用回归公式取值。

工程界普遍应用的Vanderput公式进行估算。

$$U e r = \eta_{s} \cdot \eta_{\alpha} \cdot [1 + (\epsilon - 0.5)]$$

$$\sqrt{0.72\mu \cdot r/b} \cdot \omega_{b} \cdot b$$

式中: η_s 为主梁截面形状影响系数, η_α 为攻角效应系数, b为半桥宽, r为主梁截面极惯性半径, ϵ 为扭弯频率比: μ 为桥面单位长度质量与空气的密度比, ω_n 为基阶竖弯自振圆频率。

计算得: Ucr = 215.7m/s

从以上分析可以看出,虽然桥梁跨度较大, 桥塔较高,但由于桥面较宽,且梁部结构较重, 使主梁颤振临界风速大大超过了主梁颤振检验风 速,且minT_h⁻¹=[Uer] / f_t B=2.3<2.5,故主梁的抗 风稳定性等级 为 I级. 不必进行风洞试验。

参考文献

- [1] 林元培. 斜拉桥. 北京: 人民交通出版社, 1994年
- [2] 李国豪. 桥梁结构稳定与振动. 北京:中国铁道出版社, 2002年
- [3] 范立础. 桥梁抗震. 上海: 同济大学出版社, 1997年
- [4] 公路桥涵设计通用规范(JTG D60—2004). 北京:人民交通 出版社, 2004年
- [5] 公路工程抗震设计规范(JTJ004-89). 北京: 人民交通出版社: 1990年
- [6] 公路桥梁抗风设计规范(JTC / D60-01-2004). 北京:人民交通出版社, 2004