

肋环型索穹顶初始预应力分布 的快速计算法

董石麟 袁行飞

(浙江大学空间结构研究中心 杭州 310027)

摘 要:肋环型索穹顶是美国工程师Geiger根据Fuller的张拉整体结构思想开发的一种新型预张力结构,并最早应用在 汉城奥运会的体操馆和击剑馆。考虑到该结构是一种轴对称结构,本文提出了确定初始预应力分布的快速计 算法。该法从平面径向桁架节点平衡关系入手,推导了不设和设有内拉环的肋环型索穹顶预应力杆内力一般 性的计算公式。对特定参数的索穹顶结构还给出了内力计算用表。通过本文提供的分析方法、计算公式和内 力计算用表,可方便快速地确定肋环型索穹顶结构的初始预应力分布,为该类结构的进一步设计和力学性能 分析提供基础。

关键词:索穹顶 肋环型索穹顶 张拉整体 初始预应力

1.引言

索穹顶结构是美国工程师Geiger根据Fuller^[1] 的张拉整体结构思想开发的一种新型预张力结 构,并最早应用在汉城奥运会的体操馆(如图 1)和击剑馆^[2]。它体现了Fuller关于"压杆的孤 岛存在于拉杆的海洋中"的思想,是一种受力 合理、结构效率高的结构体系。由于同时具有 构造轻盈、尺度宏伟和造价经济等特点、这种 结构一经问世便受到了建筑师的青睐、继汉城 体操馆和击剑馆之后,Geiger和他的公司又相继 建成了红鸟体育馆和太阳海岸穹顶。由美国工 程师M.P.Levy和T.F.Jing设计的乔治亚穹顶^[3]是 1996年亚特兰大奥运会主赛馆的屋盖结构(如 图2)。之后他们还成功设计了圣彼得堡的雷声 穹顶和沙特阿拉伯利亚德大学体育馆的可开启 穹顶等多项大跨度屋盖结构,进一步展示了索 穹顶结构的开发应用前景。

同张拉整体结构相似,索穹顶结构的力学 分析包括找形分析(Form-finding)、预应力分 布的确定和外力作用下的性能分析等内容^[4]。由 于索穹顶结构没有自然刚度,它的刚度完全由 预应力提供。根据结构初始几何形状、构件的 关联关系(拓扑)确定形成一定刚度的初始自 应力是索穹顶设计首先要解决的问题。

图1 Geiger设计的汉城体操馆穹顶

图2 Levy设计的乔治亚穹顶

考虑到肋环型索穹顶是一种轴对称结构, 本文提出了确定该种结构初始预应力分布的快 速计算法。文中首先提出平面径向桁架简化计 算模型,然后通过对各节点建立平衡关系推导 了不设和设有内拉环的肋环型索穹顶预应力杆 内力一般性的计算公式。文章还对特定参数的 肋环型索穹顶给出了内力计算用表,为该类结 构的进一步设计和力学性能分析提供了基础。

《預之力技术》2006年第1期总第54期

PRESTRESS TECHNOLOGY 废作好基金优秀论文奖专辑

2. 计算模型

肋环型索穹顶结构是由Geiger设计并首次应 用到工程中的,所以它又被命名为Geiger型索穹 顶。这种形式的代表工程为图1所示的汉城体操 馆穹顶。它由径向脊索、径向斜索、环索和压 杆组成,并支承于周边受压环梁上。在具体工 程应用中,肋环型穹顶又有不设内拉环和设有 内拉环两种情况。

考虑到肋环型索穹顶为一轴对称结构^[5],它 的计算模型可取一榀平面径向桁架。针对不设 内拉环和设有内拉环两种情况,分别有计算简 图3和4:

图4 设内拉环的肋环型索穹顶

其中图3b径向平面桁架中的中心竖线为等 效竖杆,等效竖杆内力Vo,equ与结构中心竖杆实 际内力Vo的关系为

$$V_{0,equ} = \frac{2}{n} V_0 \tag{1}$$

图3b和4b径向平面桁架中的水平线为等效 环索,等效环索内力H_{i,equ}与结构环索实际内力 Hi的关系由图5可得

$$H_{i,equ} = 2H_{i}\cos\phi_{n} = 2H_{i}\cos\left[\frac{\pi}{2} - \frac{\pi}{n}\right] = 2H_{i}\sin\frac{\pi}{n} \quad (2)$$

3. 初始预应力分布

分别以图3b和图4b所示简化平面桁架为基础,对各节点建立平衡关系,可推导各类杆件内力计算公式如下。

3.1 不设内拉环的情况

由平面桁架的对称性再引入边界约束条件 (包括对称面的对称条件)后,并可进一步简 化为图6所示的半榀平面桁架,由机构分析可知 该结构为一次超静定结构,在下面的推导中以 中心竖杆的实际内力Vo为基准。对图7所示各类 杆件内力示意图,由内到外对各节点建立平衡 方程,可得如下关系式:

图7 各类杆件内力示意图

节点0: $T_{1}=-\frac{1}{n\sin\alpha_{1}}V_{0}$ (3)

PRESTRESS TECHNOLOGY 距维姆基金优秀论文奖专辑

节点0':
$$B_i = -\frac{1}{n\sin\beta_i} V_0$$
 (4)

节点1:
$$T_{2=} \frac{T_{1}\cos\alpha_{1}+B_{1}\cos\beta_{1}}{\cos\alpha_{2}}$$
, $V_{1=}-T_{2}\sin\alpha_{2}$ (5)

节点1':
$$B_2 = \frac{V_1}{\sin\beta_2}$$

 $H_{1,equ} = B_{2}\cos\beta_2 \Rightarrow H_1 = \frac{B_{2}\cos\beta_2}{2\sin\frac{\pi}{n}}$ (6)

节点2: T₃=-
$$\frac{T_2\cos\alpha_2+B_2\cos\beta_2}{\cos\alpha_3}$$
,V₂=-T₃sin α_3 (7)

$$H_{2,equ} = B_{3}\cos\beta_{3} \Rightarrow H_{1} = \frac{B_{3}\cos\beta_{3}}{2\sin\frac{\pi}{n}} \qquad (8)$$

上述各式中Ti为第i段脊索的内力; Bi为第i 段斜索的内力; Hi为第i圈环索的内力; Vi为第i 根竖杆的内力。

对上述公式进行汇总。并用中心竖杆内力 Vo来表达。可得各脊索、压杆、斜索和环索的 一般性内力计算公式:

当i=1时, T₁=-
$$\frac{1}{n\sin\alpha_1}$$
V₀, B₁=- $\frac{1}{n\sin\beta_1}$ V₀ (9)
当i≥2时,

$$T_{i} = \frac{(\cot\alpha_{i} + \cot\beta_{i})(1 + \tan\alpha_{2}\cot\beta_{3})...(1 + \tan\alpha_{i-1}\cot\beta_{i-1})}{n\cos\alpha_{i}}(-V_{0})$$

$$B_{i} = T_{i}\sin\alpha_{i}/\sin\beta_{i}$$

$$V_{i-1} = -T_{i}\sin\alpha_{i}$$
(10)

 $H_{i-1} = -\frac{\cot\beta_i}{2\sin\frac{\pi}{n}}V_{i-1}$

当i≥2时,

$$T_{i}=B_{i}-\frac{2^{i-1}\cot\alpha_{1}}{n\cos\alpha_{i}}V_{0}$$

$$V_{i-1}=\frac{2^{i-1}\cos\alpha_{1}\tan\alpha_{i}}{n}V_{0}$$

$$H_{i-1}=-\frac{2^{i-1}\cot\alpha_{1}}{2n\sin\frac{\pi}{n}}V_{0}$$
(10')

由此可知此时第i段脊索与第i段斜索内力相 等,且第i圈环索内力是第i-1圈环索内力的2 倍。从以上分析和计算公式(3)-(10)可知,n是一 个参数,只要n≥3,即正三边形,正四边形, 正五边形等正多边形平面的肋环型索穹顶,均 可采用本文的分析方法和计算公式。

《预之力技术》2006年第1期总第54期

3.2 设有内拉环的情况

对设有内拉环的索穹顶,仍以竖杆内力Vo 为基准进行推导。由图8可得,

图8 内环处节点内力示意图

节点0: T₁=-
$$\frac{1}{\sin\alpha_1}$$
V₀

$$H_0^p = \frac{T_{1}\cos\alpha_1}{2\sin\frac{\pi}{n}} = -\frac{\cot\alpha_1}{2\sin\frac{\pi}{n}}V_0 \quad (11)$$

节点0': B₁=-
$$\frac{1}{\sin\beta_1}$$
V₀

$$H_0 = \frac{B_1 \cos\beta_1}{2\sin\frac{\pi}{n}} = -\frac{\cot\beta_1}{2\sin\frac{\pi}{n}} V_0 \quad (12)$$

其他节点处平衡关系和3.1节不设内环情况 类似。不同的是此时V₀为内拉环竖杆的内力, 和结构平面环向等分数n无关。

经汇总,同样可得各脊索、压杆、斜索和 环索的一般性内力计算公式:

当i=1时,

$$T_{1} = -\frac{1}{\sin\alpha_{1}} V_{0}, B_{1} = -\frac{1}{\sin\beta_{1}} V_{0}
 H_{0}^{p} = -\frac{\cot\alpha_{1}}{2\sin\frac{\pi}{n}} V_{0}, H_{0} = -\frac{\cot\beta_{1}}{2\sin\frac{\pi}{n}} V_{0}$$
(13)

当i≥2时,

《预之力投术》2006年第1期总第54期

PRESTRESS TECHNOLOGY 动伤好基金优秀论文奖专辑

 $T_{i=} \frac{(\cot\alpha_1 + \cot\beta_1)(1 + \tan\alpha_2 \cot\beta_2)...(1 + \tan\alpha_{i-1} \cot\beta_{i-1})}{(-V_0)}$ cosa

Bi=Tisinɑi/sinßi
Vi-1=-Tisinɑi
Hi-1=-
$$\frac{\cot\beta_{i}}{2\sin\frac{\pi}{n}}$$
Vi-1
作为特例, 当 $\beta_{i}=\alpha_{i}$ 时, 则同样可得
当i=1时,
T1=B1=- $\frac{1}{\sin\alpha_{1}}$ Vo, H^p=Ho=- $\frac{\cot\alpha_{1}}{2\sin\frac{\pi}{n}}$ Vo (13')
当i ≥ 2时,
Ti=Bi- $\frac{2^{i-1}\cot\alpha_{1}}{\cos\alpha_{1}}$ Vo
Vi-1= $2^{i-1}\cos\alpha_{1}\tan\alpha_{i}$ Vo
Hi-1=- $\frac{2^{i-1}\cot\alpha_{1}}{2\sin\frac{\pi}{n}}$ Vo (14')

)

4. 算例和图表

算例1设有一不设内拉环的肋环型索穹顶, 跨度L, 矢高f, 球面穹顶半径R, 其简化半榀平 面桁架尺寸见图9。其中各段脊索水平投影长度 相等,由几何关系不难得出

图9 不设内拉环的简化半榀平面桁架尺寸

$$\sin \varphi_{i} = \frac{iL}{2mR}$$

$$\alpha_{i} = \frac{\varphi_{i} + \varphi_{i-1}}{2} = \frac{1}{2} \left[\sin^{-1} \left[\frac{iL}{2mR} \right] + \sin^{-1} \left[\frac{(i-1)L}{2mR} \right] \right]$$
(15)

当 $\beta_i = \alpha_i$ 时,将公式(15)代入公式 (9')、(10')可得各类杆件内力。为便 于直接应用,下面对f/L=0.1, 0.15, 0.20, m=2.3.4.5, n≥3情况计算杆件内力(V₀以 单位内力-1计),并编制相应内力计算用 表如表1、表2、表3。对给定n,表中内力 值除以n即得实际结构各类杆件预应力分布 的相对内力。

表1 不设内拉环的索穹顶杆件内力计算用表(f/L=0.1)

	i	1	2	3	4	5
	nT=nB	10.35	21.53			
m-2	πV_{i-1}	-lxn	-6.24			
10-2	$2nH_{i-1}\sin(\pi/n)$		20.61			
	nTi≂nBi	15.57	31.66	65.62		
ın=3	nVi-i	-1xn	-6.10	-21.08		
	$2nH_{i-1}\sin(\pi/n)$		31.07	62.14		
	nTi=nBi	20.78	41.94	85.52	176.33	
	nV ₁₋₁	-1xn	-6.06	-20.58	-59.42	
	$2nH_{i-1}\sin(\pi/n)$		41.50	83.00	166.01	
	nTi=nBi	25.98	52.27	105.82	215.67	442.81
m=5	nViet	-1xn	6.04	-20.37	-58.11	-153.41
	$2\pi H_{i-1}\sin(\pi/n)$	1741	51.92	103.85	207.69	415.38

	í	1	2	3	4	5
	nTi=nBi	7.20	15.69			
m=2	nV⊢ı	-1×n	-6.55			
171 - N	2nHi-isin(π/n)		14.25	_		
	nTi=nBi	10.85	22.49	48.72		
m-3	nV(-)	−1xn	-6.22	-22.47		
	$2nH_{i-1}\sin(\pi/n)$		21.61	43.23		
	nT)=nBi	14.50	29.57	61.64	132.16	
	nVi-1	-1xn	-6.12	-21.26	-69.85	
m-4	2nHi-isin(π/n)		28.93	57.86	115.71	
	nTi=nBi	18.14	36.73	75.37	157.06	333.82
m=5	nVisi	~1×n	-6.07	-20.78	-60.63	-165.71
	$2nH_{r-1}\sin(\pi/n)$		36.22	72.45	144.89	289.78

表2 不设内拉环的索穹顶杆件内力计算用表(f/L=0.2)

表3 不设内拉环的索穹顶杆件内力计算用表(f/L=0.15)

	i	1	2	3	4	5
	nT;=nB;	5.71	13.24			
m=2	nV ₁₋₃	-1×n	-7.00			
	$2nH_{i-1}\sin(\pi/\pi)$		11.24			
	nTi=nB.	8.64	18.31	42.17		
	$\mathbf{n}\mathbf{V}_{i-1}$	-1×n	-6.36	-24.48		
m=.,	2nHasin(π/n)		17.17	34.33		
	nT;=nBi	11.56	23.84	51.09	115.90	
nı=4	nV⊷ı	-lxn	-6,19	-22.12	-70.36	
111-4	2nHi-isin(π/n)		23.03	46.06	92.11	
	πTi≂nBi	14 47	29.50	61.52	131.95	295.21
m=5	nVi-1	-1xn	-6.12	-21.27	-63.90	-183.95
	$2nH_{i}$ sin (π/n)	-741	28.86	57.72	115.45	230.89

算例2有一设内拉环的肋环型索穹顶,跨度 L, 矢高f, 内环直径L₀, 球面穹顶半径R, 其简 化半榀平面桁架尺寸见图10。其中各段脊索水 平投影长度相等,由几何关系可得出

PRESTRESS TECHNOLOGY) 欧维姆基金优秀论文奖专辑

图10 设有内拉环的简化半榀平面桁架尺寸

当β_i=α_i时,将公式(16)代人公式(13')、 (14')可得各类杆件内力。为便于直接应用, 下面对f/L=0.1,0.15,0.20,m=2,3,4,5,n≥3情 况计算V₀单位内力-1时的各杆内力,并编制内 力计算用表如表4、表5、表6。

表4 设内拉环的	索穹顶杆件内力计算用表。	(f/L=0.1)
----------	--------------	-----------

	i	1	2	3	4	5
	nT:=nBi	7.97	16.56			
m=2	nVi-i	-1	-4.96			
	$2nH_{i}$ sin(π/n)	7.91	15.81			
	nTi=nBi	10.38	21.15	43.75		
n=3	nV _{i-1}	-1	-4.48	-14.33		
	2nH⊷sin(π/n)	10.33	20.67	41.34		
	ոTւ=nBւ	12.22	24.72	50.40	103.70	• • • • •
n=4	nVi-+	-1	-4.16	-12.85	-35,44	
	2nH⊢sin(π/n)	12.18	24.36	48.73	97.46	
	nTi=nBi	13.68	27.56	55.82	113.69	232.98
n=5	nV _{i-1}	-1	-3.92	-11.82	-31.94	-81.60
	A 11 (/ /)					
		13.64 下的索穹I			109.11 € (f/L=0.	218.23 15)
		13.64 下的索穹顶	27.28 页杆件内ナ 2	54.56	109.11 € (f/L=0. 4	<u>218.23</u> 15)
		<u>13.64</u> 下的索穹顶 <u>1</u> 5.55	<u>27.28</u> 页杆件内ナ 2 12.09	54.56 力计算用表 3	109.11 € (f/L=0. 4	218.23 15) 5
n=2	2nHssin(tt/n) 表5 设内拉∌ i nT:=nBi nV:-i	13.64 不的索穹顶 1 5.55 -1	<u>27.28</u> 页杆件内力 <u>2</u> 12.09 -5.21	54.56 5计算用表 3	109.11 € (f/L=0. 4	218.23 15) 5
n=2	2nHi-isin(#/n) 表5 设内拉ℱ i nT.=nBi nVi 2nHi-isin(#/n)	13.64 不的索穹顶 1 5.55 -1 5.45	<u>27.28</u> 页杆件内プ 2 12.09 -5.21 10.91		109.11 € (f/L=0. 4	<u>218.23</u> 15) <u>5</u>
n=2	2nHi-isin(t/n) 表5 设内拉ℱ i nTi=nB, nVi-i 2nHi-isin(t/n) nTi=nB,	13.64 不的索穹顶 1 5.55 -1 5.45 7.24	27.28 页杆件内力 2 12.09 -5.21 10.91 15.06	<u>54.36</u> 力计算用表 <u>3</u> <u>32.50</u>	109.11 € (f/L=0. 4	<u>218.23</u> 15) <u>5</u>
n=2	2nHi-isin(元/n) 表5 设内拉5 i nTi=nBi nVi-i 2nHi-isin(元/n) nTi=nBi nVi-i	13.64 下的索穹顶 -1 5.45 7.24 -1	27.28 页杆件内力 2 12.09 -5.21 10.91 15.06 -4.58	54.36 7计算用表 3 32.50 ~15.27	109.11 € (f/L=0. 4	<u>218.23</u> 15) <u>5</u>
n=2 n=3	2nHsun(π/n) 表5 设内拉ℱ ⁱ ^{nTi=nBi} nVi-1 2nHi-isin(π/n) nTi=nBi nVi-1 2nHsin(π/n)	13.64 下的索穹顶 1 5.55 -1 5.45 7.24 -1 7.17	<u>27,28</u> 瓦杆件内プ 12.09 -5.21 10.91 15.06 -4.58 14.34	<u>54.56</u> 7计算用表 3 32.50 -15.27 28.69	109.11 € (f/L=0. 4	<u>218.23</u> 15) <u>5</u>
n=2 n=3	2nHssn(t/n) 表5 设内拉步 nT:=nB, nV 2nH-isin(t/n) nT:=nB, nVi 2nHisin(t/n) nT:=nB,	13.64 下的索穹丁 1 5.55 -1 5.45 7.24 -1 7.17 8.53	<u>27.28</u> 東杆件内プ 12.09 -5.21 10.91 15.06 -4.58 14.34 17.46	54.56 3 3 32.50 -15.27 28.69 36.41	109.11 ∉ (f/L=0. 4 77.75	<u>218.23</u> 15) 5
n=2 n=3	2nHssn(π/n) 表5 设内拉步 ⁱ ^{nT.=nB,} nV 2nHtsin(π/n) nT=nB, nV 2nHsin(π/n) nT.=nB, nV	13.64 下的索穹丁 1 5.55 -1 5.45 7.24 -1 7.17 8.53 -1	<u>27.28</u> 東杆件内プ 12.09 -5.21 10.91 15.06 -4.58 14.34 17.46 -4.21	54.36 计计算用录 32.50 -15.27 28.69 36.41 -13.31	109.11 ∉ (f/L=0. 4 77.75 -38.08	<u>218.23</u> 15)
n=2 n=3 n=4	2nHsin(π/n) 表5 设内拉廷 nT:=nB: nV+-1 2nHisin(π/n) nT:=nB: nV+1 2nHsin(π/n) nT:=nB. nV-1 2nHsin(π/n)	13.64 下的索穹丁 1 5.55 -1 5.45 7.24 -1 7.17 8.53 -1 8.47	27.28 页杆件内力 2 12.09 -5.21 10.91 15.06 -4.58 14.34 17.46 -4.21 16.94	54.36 54.36 54.36 54.36 54.36 -15.27 28.69 36.41 -13.31 33.89	109.11 ₹ (f/L=0. 4 77.75 -38.08 67.79	<u>218.23</u> <u>15</u>) <u>5</u>
n=2 n=3 n=4	2nHsan(π/n) 表5 设内拉歩 ⁱ nT:=nB: nV+-1 2nHisin(π/n) nT:=nB: nV+i 2nHisin(π/n) nT:=nB: nV+i 2nHsin(π/n) nT:=nB;	13.64 下的索穹玑 5.55 -1 5.45 7.24 -1 7.17 8.53 -1 8.47 9.55	27.28 须杆件内力 2 12.09 -5.21 10.91 15.06 -4.58 14.34 17.46 -4.21 16.94 19.40	34.36 7计算用表 3 32.50 -15.27 28.69 36.41 -13.31 33.89 39.86	109.11 ₹ (f/L=0. 4 77.75 -38.08 67.79 82.99	<u>218.23</u> <u>15</u>) <u>5</u> 175.66
n=2 n=3 n=4 n=5	2ntlssn(t/n) 表5 设内拉廷 ⁱ nVi 2nHisin(t/n) nT=nB nVi 2nHisin(t/n) n ^T =nB, nVi 2nHsin(t/n) nT-=nB, nVi	13.64 下的索穹玑 -1 5.55 -1 5.45 7.24 -1 7.17 8.53 -1 8.53 -1 8.47 9.55 -1	27.28 页杆件内力 2 12.09 -5.21 10.91 15.06 -4.58 14.34 17.46 -4.21 16.94 19.40 -3.96	34.36 7计算用表 3 32.50 -15.27 28.69 36.41 -13.31 33.89 39.86 -12.08	109.11 ₹ (f/L=0. 4 77.75 -38.08 67.79 82.99 -33.40	<u> </u>

表6 设内拉环的索穹顶杆件内力计算用表(f/L=0.2)

《预之力技术》2006年第1期总第54期

	i	1	2	3	4	5
	nTi=nBi	4.40	10.22			
m=2	nV⊢ι	-1	-5.56			
	2nHi-isin(π/n)	4.29	8.58			
,	nTi≃nBi	5.77	12.29	28,17		
m=3	nVi⊢1	-1	-4.69	-16.65		
	2nH-usin(π/n)	5.68	11.36	22.72		
	nTi≃nBi	6.80	14.12	30.29	68.27	
m=4	nV⊷ı	-1	-4.27	-13.89	-41.99	
	2nHi⊸sin(π/n)	6.73	13.46	26.91	53.82	
	nTi≠nBi	7.62	15.62	32.65	69.97	155.50
m=5	nV _{i-1}	-1	-3.99	-12.41	-35.32	-97.90
	2nHi-isin(π/n)	7.55	15.10	30.20	60.41	120.81

由表1-3和表4-6可知,随矢跨比增加,索 穹顶结构中的脊索、斜索和环索内力明显减 小,而压杆内力稍有增加。由于β_i=α_i,对同一 类索或压杆,每递增一圈,其内力要增加一 倍以上,其中环索内力正好增加一倍。对应 相同矢跨比。设有内拉环的索穹顶结构各类 相应杆件内力比不设内拉环的肋环型索穹顶 内力小得多。

5. 结论

考虑到肋环型索穹顶是一种轴对称结构, 本文提出了确定该种结构初始预应力分布的快 速计算法。该方法从节点平衡关系入手推导了 各类杆件内力一般性计算公式。文章还对特定 参数的索穹顶给出了内力计算用表,分析了不 设和设有内拉环的索穹顶各类杆件预应力分布 的一般规律。通过本文提供的分析方法、计算 公式和内力计算用表,可方便快速的确定肋环 型索穹顶结构的初始预应力分布,为该类结构 的进一步设计和力学性能分析提供了基础。

参考文献

[1]R B Fuller.Tensile-IntegrityStructures[P].USPatent3, 063,521,1962.

[2]D H Geiger.The design and construction of two cable domes for the Korea Olympics[A].Shells,Mem-branes and Space Frame,Proceedings of IASS Interna-tional Symposium[C].1986: 265–272.

[3]M P Levy.Georgia dome and beyond achieving light weight-longspan structures[A].Proceedings of IASS-ASCE International Symposium[C].1994:560-562.

[4]钱若军.张力结构形状判定评述[A].新型空间结构 论文集[C].杭州:浙江大学出版社,1994:299-312.

[5]刘开国.拉索穹顶结构在轴对称荷载作用下的计 算[J].建筑结构学报,1993(5):28-36.