水池结构

泰安污水处理厂消化池测试研究

张玉敏张然姚旭

摘 要 本文通过对泰安污水处理厂消化池进行测试研究,证明在消化池中应用 BUPC 无粘结预 应力技术可使其更加安全可靠。

关键词 无粘结 预应力 消化池

1991年7月,中国市政工程华北设计院、泰 安污水处理厂筹建处和北京市建筑工程研究院三 家单位共同合作,在泰安污水处理厂两个完全相 同的消化池建设中采用 BUPC 无粘结预应力技 术,池壁内水平环向配置无粘结预应力筋,锚固系 统为三孔群锚,通过预压应力来抵抗池壁的环向 拉应力,提高其抗裂性和强度,从而减薄壁厚,节 省钢筋和混凝土用量,提高水池的使用性,这在国 内相同结构形式的消化池建设中尚属首次。无粘 结预应力技术与绕丝预应力技术相比较,节省了 昂贵的绕丝设备开支,便于施工,具有很大的推广 价值。同时,在施工中第一次采用群锚并逐根张拉 的 BUPC 新工艺,因而受到各方面的重视。北京 市建筑工程研究院对其中一个消化池进行了测试 研究。

一、工程概况

泰安污水处理厂的两个消化池均为内径 18m,壁厚 30cm,壁高 12.5m 的圆筒形构筑物,其 中有 5.5m 位于地面以下。在消化池池壁四周均 设置有四个扶壁,环向同一平面内,无粘结预应力 钢绞线分两个集团束在两个相对扶壁的两侧各按 180°角相交于这两个扶壁并从扶壁侧面伸出,沿 池壁高度相邻两平面内的预应力筋其两集团束相 交并伸出扶壁的位置相差 90°。这两个消化池均 采用 C30 混凝土,预应力和非预应力配筋以及水 池平、剖面布置也完全一样,扶壁部分见图 1。每 个消化池的结构施工均分四段完成,即池底板混 凝土浇筑→池壁混凝土浇筑→池壁圈梁和锥壳形

张玉敏 张 然 姚 旭 北京市建筑工程研究院

顶盖混凝土浇筑→张拉池壁预应力钢筋。

二、测试目的及方法

(一)测试目的

掌握不同工况下该池池壁中非预应力钢筋的 受力大小,以了解池壁内力在不同工况下的实际 分布,观察池壁的抗开裂情况,从而证明在消化池 中采用 BUPC 无粘结预应力技术的可靠性,以便 推广。

(二)测试手段及测试仪器

采用钢弦式钢筋应力计来测试池壁内不同测 点在不同工况下非预应力钢筋的受力大小以达到 测试目的。钢弦式钢筋应力计的外形见图 2.

(三)测点位置及仪器布置

1. 测点位置

平面位置为第一个消化池的西北角,与东西 轴线呈 45°角。剖面位置见图 3。

水池结构

2. 仪器布置

按测点位置布置钢弦式钢筋应力计,布置时 应力计应绑在测点位置断开的非预应力筋上,以 使其牢固,应力计工作段两侧的锚固长度应满足 有关规范的要求,取 45d,应力计的直径与测试点 处非预应力钢筋与非预应力筋的直径相同。

(四)测试内容与工况

 测试内容 ①预应力筋张拉前混凝土池 壁内非预应力钢筋受力;②张拉预应力筋过程中 池壁内非预应力钢筋受力;③试水、试气过程中池 壁内非预应力钢筋受力。

2. 测试工况 为了测到上述内容,测试开始前,根据该工程的施工安排,合理选择了测试工况:①布置仪器后浇筑混凝土前;②浇筑混凝土后张拉预应力筋前;③张拉预应力筋的过程;④试水、试气的过程。

三、测试结果与分析

(一)预应力筋张拉前水池内非预应力钢筋受力的实测大小与分析

池壁浇筑混凝土后,在强度增加过程中,由于 自身的硬化,池壁产生干缩,干缩是该阶段使池壁 环向和竖向产生内力的主要因素。池壁强度超过 70%的设计强度后,进行顶部圈梁和锥形顶盖的 混凝土浇筑和养护,由于圈梁和顶盖的干缩受到 池壁的限制,使圈梁和顶盖产生内力,同时对池壁 内力也有影响。

1. 非预应力钢筋受力的实测值见表]。 38 2. 分析

①池壁中非预应力钢筋的内力 该工程池壁 与顶盖的混凝土浇筑施工是分两个阶段进行的, 浇筑池壁圈梁及顶盖时,池壁混凝土的强度已超 过设计强度的 70%,池壁混凝土的干缩已基本完 成,由混凝土干缩产生的池壁内力主要是在浇筑 池壁圈梁及顶盖前产生。

②池壁环向内力 在池壁下部,由于混凝土 的环向干缩受到水池底板的约束,因而在池壁竖 向截面内混凝土产生环向拉力和环向拉应变,这 种拉应变受到池壁内环向非预应力钢筋的限制而 有所减小,环向非应力钢筋则产生拉力。底板的约 束沿池壁高度逐渐减弱,同样混凝土和钢筋的环 向拉力也逐渐减小,在池壁顶部接近圈梁处这种 约束已经很小,不再能限制混凝土的干缩,在池壁 混凝土干缩下,其竖向截面内混凝土的干缩,在池壁 混凝土干缩下,其竖向截面内混凝土的干缩,在池壁 混凝土干缩下,其竖向截面内混凝土的干缩,在池壁 混凝土干缩下,其竖向截面内混凝土的干缩,在池壁 高度分布见图 4.

③池壁竖向内力 池壁竖向内力主要是由其 自重和混凝土竖向干缩引起的,池壁的环向干缩 以及后浇筑的池壁圈梁和顶盖混凝土的干缩对池 壁竖向内力也有影响。一方面由于自重和竖向干 缩,池壁混凝土和竖向非预应力钢筋均受压,两侧 竖向非预应力筋的压力是相等的,另一方面,对于 先后浇筑的混凝土池壁和圈梁,其环向干缩引起 的水池径缩在池壁上产生了使外侧竖向非预应力 筋受拉、内侧竖向筋受压的竖向弯矩,而此阶段竖

向非预应力钢筋的内力正是以上两种情况的叠 加。

水池结构

④池壁圈梁及顶盖内力 浇筑池壁圈梁及顶 盖后,圈梁及顶盖混凝土的干缩在对池壁内力施 加影响的同时,自身也由于混凝土的干缩受到池 壁和配置的非预应力钢筋的限制而受力。对于圈 梁,混凝土及环向非预应力钢筋均受拉;对于顶 盖,混凝土及非预应力钢筋的径、环向也均受拉。

(二)张拉预应力筋过程中水池内非预应力钢 筋受力的实测大小与分析

1. 非预应力钢筋受力的实测值

进行测试的消化池是在 1992 年 6 月 8 日至 13日张拉预应力筋的,单根预应力筋张拉力设计 要求 150kN,实际 154.5kN,超张拉 3%。张拉由 上至下进行,过程中进行了4次测试,结果见表 2.

将表2每次测试中各测点数值减去表1中相 应测点的数值,得到张拉预应力筋过程中,由于张 拉,水池内非预应力钢筋在预应力第一批损失后 建立起的预压力,见表 3。

2. 分析

4 次测试使预应力筋张拉分为4次完成,各 次测得的池壁和圈梁内环向非预应力钢筋由于张 拉预应力筋建立起的预压力分布见图 5。

由表 2、表 3 和图 4 可见:

①张拉后,预应力筋通过锚固系统传给池壁

和圈梁的环向预压力具有扩散性,且压力越大,扩 散的范围和数值就越大,某一位置环向非预应力 钢筋在预应力第一批损失后产生的预压力是所有 **预应力筋张拉后在该位置产生的**预压力之和。

②预应力筋张拉结束后,池壁和圈梁内环向 非预应力钢筋沿高度建立起的预压力分布呈曲线 形式,不同高度数值不等,这与预应力筋配筋量和 底板的约束有关。

在池壁中段高 2m~6.33m 范围,预应力筋 配筋量最大,而底板约束又比 2m 以下要小得多, 因而这段池壁建立的环向预压力最大。

在池壁高 2m 以下,虽然预应力筋配筋量与 池壁中段相同,但由于底板约束很大,预压力在此 段迅速减小。在池壁高 6.33m 以上包括圈梁,预 应力筋每米配筋量减少约40%,虽然底板约束已 经很小,但建立起的预压力也明显小于池壁中段。

③池壁和圈梁在预压力下的变形使它们均产 生径缩,但预压力的不同,刚度的不同,使它们产 生径缩的大小也不一样,圈梁的水平刚度较池壁 大得多,预压力又相对较小,因而水池在圈梁处的 径缩很小,圈梁和底板在池壁两端对池壁的径缩 起到约束作用,相当于两个支座,这使得在张拉预 应力筋过程中,由于径缩池壁产生的竖向弯矩在 池壁两端与池壁中部符号相反,本测试测得在池 壁下端第1、2测点处,外侧非预应力钢筋受拉,内 侧非预应力钢筋受压;而在第7、8测点处,外侧非 预应力钢筋受压,内侧非预应力钢筋受拉。

④张拉预应力筋使水池顶盖径向产生压力, 而对顶盖环向内力影响不大。

(三)预应力发生第二批损失后水池内非预应 力钢筋受力的实测大小与分析

1. 非预应力钢筋受力的实测值

1993年4月16日试水、试气前,对张拉后已 10个多月的水池进行了测试,测试结果见表 4。

2. 分析

① 预应力筋张拉后 10 个月, 预应力第二批损 失的绝大部分已完成,池壁和圈梁内环向非预应 力钢筋的有效预压力减小,沿池壁高的实际分布 见图 6。

②张拉预应力筋时产生的竖向弯矩在池壁底 部和中部均有所减小,从两侧竖向非预应力筋的 测试结果看,相对于张拉时,在池壁下端第1、2测

39

水池结构

点处外侧非预应力钢筋的拉力和内侧非预应力钢 筋的压力均减小;在第7、8测点处,外侧非预应力 钢筋的压力和内侧非预应力钢筋的拉力也均减 小。

③池壁内有效压力的降低使顶盖径向非预应 力钢筋压力减小,而对顶盖环向非预应力筋影响 不大。

(四)试水、试气过程中水池内非预应力钢筋 受力的实测大小与分析

1. 非预应力钢筋受力的实测值

1993 年 4 月 17 日至 22 日对消化池进行了 试水、试气,其间对该池非预应力钢筋的测试结果 见表 5。

将表 5 每次测试中各测点数值减去表 4 中相 应各测点的数值,得到由于试水、试气水池内非预 应力钢筋产生的内力,见表 6。

2. 分析

①试水、试气中测得的池壁环向非预应力钢 筋最大拉力在测点4处为1.27kN,σ_g=82.83kg/ cm²,σ_h=12.43kg/cm²。②池壁竖向筋受力不论压 力还是拉力较试水前都略微减小。③试水时,水池 顶盖径向非预应力钢筋的压力略有减小,环向非 预应力钢筋拉力无变化。试气后气压作用于水池顶盖,径、环向应力均变成拉力。

四、小结

(一)通过对该池壁中非预应力钢筋在不同工 况下受力的测试,了解其内力的分布,观察池壁的 开裂,证明在消化池中应用 BUPC 无粘结预应力 技术是安全可靠的。

(二)池壁浇筑混凝土后,在强度增长过程中, 由于自身的硬化,池壁产生干缩,干缩是使池壁环向和竖向产生内力的主要因素。此外,池壁强度超过70%的设计强度后,进行顶部圈梁和锥形顶盖 混凝土浇筑和养护,由于圈梁和顶盖的干缩受到 池壁的限制,使圈梁和顶盖产生内力,对池壁内力 也有影响。

(三)张拉预应力筋后,池壁、圈梁内环向非预 应力筋建立的预压力具有扩散性,其扩散范围及 数值随压力增加而增大,并沿高度建立的预压力 分布呈曲线,这种预压力与预应力筋的配筋量、底 板约束有关,随配筋量的增加而增大,随约束增大 而减小。

池壁和圈梁在预压力影响下产生径向变形, 变形随预压力增大而增加,随构件的刚度增大而 减小,但对顶盖环向内力影响不大;圈梁和底板对 池壁径向变形有约束,使得池壁产生竖向弯矩。

(四)试水、试气前,第二批预应力损失后,张 拉时池壁、圈梁内环向非预应力筋的有效预压力、 池壁竖向弯矩、顶盖径向非预应力钢筋压力均有 所减小。

(五)试水、试气过程中,池壁环向非预应力钢 筋最大拉力与设计计算值近似。约在距底板上 2.70m 左右处,池壁竖向筋内力、试水时的顶盖 径向压力均有减小,试气后由于氧化作用使顶盖 径、环向应力由压变拉。

单位:kN 表 1

			池 壁	环 向			睠	梁	_	池壁	竖向		顶	蓋 环	向	顶	盖 径	ំ]
	3	4	5	6	9	10	11	12	1	2	7	8	13	15	17	14	16	18
预应力筋 张拉前	0.65	0. 525	0.31	0.16	0.085	0.027	0.47	U. 42	-0.84	- U. 72	-0.53	- 0. 41	0.42	0.34	0.28	0.38	9-372	0.392

单位:kN 表 2

			池璧	环向			26	栔		池璧竖向				〔蓋环	向	顶盖径向		
	3	4	5	6	9	10	11	12	1	2	7	8	3	4	5	6	9	10
■ 柴 张拉完毕	0.613	0.384	0. 097	-0.11	-0.22	-0. 298	-0.21	-0.34	-1.17	-0. 399	-0.083	-0.832	0.41	0.335	0.277	0.16	0 153	0. 161
樂下 15 束 张拉完毕	0. 2 9	-0.178	-0-438	-0.785	-0.675	-0. 928	-0.59	-0.655	-1.665	0- 089	0. 283	-1.213	0.39	0.341	0.26	0. 028	0 023	0. 022
発下9束 张拉完毕	-0.635	- 1. 442	-1.818	-2.189	-1.365		-0.78	-0.8	-2. 325	-0. 758	0. 989	-1.931	0.43	0.35	0.31	-0.038	-0.042	-0.048
全 部 张拉完毕	— 1. 2	- 2. 285	-2.35	-2.54	-1.62	-1.636	-0. 905	-0.91	-2.49	0- 911	1.203	-2.147	0. 427	0. 347	0. 267	-0.061	-0.064	-0.072

水池结构

单位:kN 表 3

			池璧	环向			圖樂 池壁竖向					IJ	重蓋环	向	顶盖径向			
	3	4	5	6	9	10	11	12	1	2	7	8	3	4	5	6	9	10
圖 梁 张拉宪毕	-0. 037	-0. 141	0. 213	0. 27	-0. 305	-0. 325	-0.68	-0.76	-0.33	0. 321	0. 447	-0. 422	-0.01	-0.005	-0.00	-0. 22	-0.219	-0 231
難下 15 束 张拉完毕	-0.36	-0.703	9-0. 748	-0. 945	-0.76	-0. 955	-1.06	-1. 075	-0. 825	0. 809	0. 813	-0. 803	-0. 03	0.001	0. 02	-0. 352	-0.349	- 0. 37
乗 下 9 束 张拉完毕	-1.285	-1.961	7-2.128	-2.349	-1.45	-1.465	-1.25	-1.22	-1-485	1. 478	-1.519	-1. 521	0. 01	0. 01	0.013	0.418	-0.412	-0.44
全 部 张拉完毕	- 1.85	-2.81	- 2. 66	-2.7	-1.705	-1. 663	-1.375	-1.33	1. 65	-1-631	1. 733	-1. 731	0.007	0. 007	-0.01	-0. 441	-0 436	-0 464

单位:kN 表 4

1097 #			池璧	环向				栔	池璧竖向				IJ	顶盖环向			顶盖径向			
15554	3	4	5	6	9	10	11	12	1	2	7	8	13	15	17	14	16	18		
4月16日	-0.93	- 1. 995	-2.13	- 2. 22	-1.39	-1.326	-0.72	-0.77	-2.21	0.641	0.992	-1.922	0.39	0.388	0.279	- 0. 029	-0.031	- 0. 034		

单位:kN 表 5

[池蟹环向							架	架 池壁竖向					〔豊环	向	顶盖径向		
	3	4	5	6	9	10	11	12	1	2	7	8	13	15	17	14	16	18
试水 (1/3)・H	-0.568	-1, 685	- 1.85	-1.93	-1.23	-1.196	-0. 608	-0.667	-2.16	0. 626	0. 968	-1.916	0. 388	0. 39	0. 275	0. 028	− 0 . 031	-0. 034
试水 (2/3)・H	-0.144	-0.66	-0. 91	-1.17	-0.43	-0.456	-0.34	0. 35	-2.146	0. 602	0. 946	-1.911	0. 392	0. 382	0. 277	- 0. 025	-0.03	0.033
试水	-0.789	0. 295	-0.02	-0.45	0. 08	-0. 226	0.2	0. 19	-2.111	0.576	0. 891	-1. 903	0. 391	0. 379	0.28	-0.024	-0.028	-0. 032
试气压力 400高水柱	0.48	0. 885	0.39	-0.07	0. 23	0.004	0.44	0.44	-2.081	0.531	0.834	-1.896	0.496	0. 523	0. 368	0.011	0.015	0.017
试气压力 900 高水柱	0.7	1.275	0. 93	0.31	0. 531	0. 244	0. 62	0.6	-2.039	0. 483	0. 788	-1.818	0. 58	0. 674	0. 482	0. 032	0.037	0.041

单位:kN 表 6

			池壁	环向				栔		池璧	竖向		IJ	〔盖环	向	顶盖径向		
1	3	4	5	6	9	10	11	12	1	2	7	8	13	15	17	14	16	18
试水 (1/3)・H	0.365	0. 31	0.28	0. 29	0.16	0.13	0.112	0. 103	0. 043	-0.015	-0.024	0. 006	0. 008	0.002	- 0. 004	0.001	0	0
试水 (2/3)・H	0. 786	1. 335	1. 22	1.05	0.96	0. 87	0.38	0. 42	0.064	-0. 039	-0.046	0. 011	0.002	-0.006	-0.002	0.004	0.001	0. 001
试水 H	1.141	2. 29	2.11	1.77	1.31	1.1	0. 92	0. 96	0. 099	-0.065	-0. 101	0-019	-0.005	-0.009	0. 001	0.005	0.003	0. 002
试气压力 400 高水柱	1.41	2.88	2. 52	2.15	1.62	1-33	1.16	1.21	0. 129	- 0. 11	0.158	0. 026	0.106	0. 135	0. 089	0.04	0 . 046	0. 051
試气压力 900高水柱	1.63	3. 27	3.06	2. 53	1. 921	1.57	1.34	1.37	0.175	-0. 158	-0. 204	0. 104	0.19	0. 286	0. 203	0. 061	0. 068	0.075