OVM 锚固体系的可靠性分析

朱万旭 李其燕 郑晓龙 王守海

提 要 本文利用计算机有限元分析及疲劳分析软件对 OVM 锚固体系的关键承载元件-锚具进行数值分析和疲劳分析,以说明 OVM 锚固体系的可靠性。

关键词 OVM 锚固体系 可靠性 分析

一、概述

OVM 锚固体系自 1990 年研制成功以 来,已广泛应用于国内预应力砼结构、 钢结构和岩土锚固工程。如吉林丰满电 站砼坝基加固工程、上海南浦大桥桥墩 预应力砼工程、北京西客站主站房预应 力钢结构工程、北京居庸关高边坡锚固 工程、长江三峡链子崖大滑坡防滑崩工 程等,均达到了增强加固的目标。

OVM 锚固体系的配套机具从设计、 制造、试验等方面着手提高整个体系的 质量及其可靠性。为确保锚固体系的关 键承载元件——夹片与锚板付的可靠 性,采用了计算机设计、分析、数控机 床加工、数控多用炉热处理、计算机耐 久性仿真分析与工业试验相结合的方 法,提高锚具结构的合理性及其力学性 能的可靠性。总之,采取了系统的综合 性技术措施,充分发挥了计算机技术的 作用。

二、锚固体系中力的传递与分布

1、OVM 锚固体系总成

OVM 锚固体系的结构随其应用于不 同的砼、钢、岩土工程而有所不同,基本结 构均包括预应力张拉端锚具、锚索体及置 干锚固体内的固定端锚具三大部分。外部 施工设备主要有:单孔和整束张拉千斤 顶、电动液压油泵和高压管路。每个部分 包括若干个元器件,如图 1、图 2 所示。

2、张拉力的传递与应力分布

在张拉过程中,外部荷载通过张拉端 锚具、钢绞线、固定端锚具作用于锚下砼 (钢、岩土)结构中。砼结构所承受的是内、 外锚具传递过来的压应力。这种由钢绞线 的拉应力转换在锚固体上的预加压应力, 使预应力结构得以发挥其增强抗拉强度

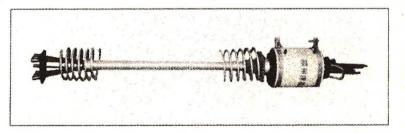


图 1 OVM锚固体系总成图

朱万旭 柳州欧维姆建筑机械有限公司技术中心

李其燕 柳州欧维姆建筑机械有限公司技术中心

柳州欧维姆建筑机械有限公司技术中心 郑晓龙 王守海

柳州欧维姆建筑机械有限公司技术中心

硕士工程师

助工 助工

教授级高工

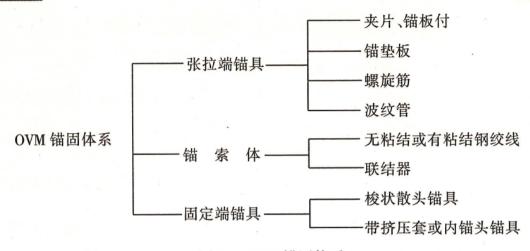
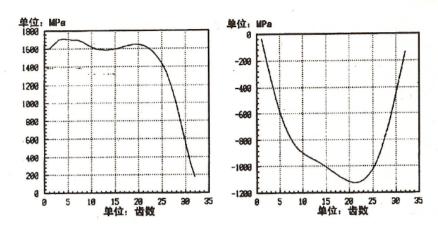


图 2 OVM 锚固体系

和抗裂缝变形能力的作用。


三、锚固体系的受力分析

锚板和夹片是整个体系的关键承载部件,它的作用是夹持住被张拉的钢绞线。每个锚孔和夹片构成一个基本的锚固单元。OVM 锚具的锚固单元中夹片夹持钢绞线的长度为 46mm, 丝牙数 36个,牙高不到 1mm。它在承受高达 95%

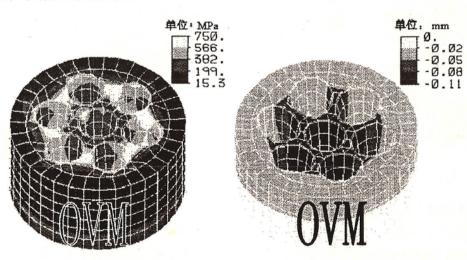
的钢绞线极限拉力(250KN)的情况下,一方面必须夹持住钢绞线,不滑丝;另一方面必须尽可能减少夹片对钢绞线的损伤,以防钢绞线张拉破断。可见,夹片丝牙所承受的应力水平相当高,钢绞线咬合段的应力状态相当复杂。因此,对夹片及钢绞线进行力学分析,是十分必要的和重要的技术工作。

1、锚固单元的有限元分析

应用工程力学弹塑性理论,对锚固单元进行非线性有限元分析。将连续体求解的区域分割成有限个单元,在应力集中的部位,适当加密单元。根据夹片热处理工艺,夹片模型内部单元限定其屈服极限为800MPa。钢绞线模型限定其屈服极限为1688MPa,抗拉极限为1860MPa。两者的弹性模量均为195000MPa,泊松比均为0.3。给定约束条件并逐步加载。分析运算结果如图3所示。图3(a)为钢绞线拉力达到95%极限值时,其夹持段的Von-Mises 应力分布曲线,图3(b)为径向压应力分布曲线。

(a) Von-Mises 应力

(b)径向压应力


图 3 钢绞线咬合段各截面应力分布

由图 3(a) 可见,前 22 个齿的 Von-Mises 应力相差不大,应力差在 100MPa 以内,并且 Von-Mises 应力值均小于 1800MPa。这表明 OVM 锚固单元的设计是合理的,能够承受得起 95%的钢绞线极限拉力。图 3(b)表明夹片小端的径向压应力的绝对值较小,这显然有利于减少夹片对钢绞线的损伤。

2、多孔锚板的有限元分析

锚板是预应力锚固体系的重要组成部件,承受钢绞线拉力并将力通过锚垫板传递、分散到混凝土结构中。多孔锚板的受力状态复杂,采用有限元方法可以方便地计算、校核其应力状态。图 4 为七孔锚板的分析计算结果。

由于锚板和夹片的接触特点,锚孔内

(a) 锚板 Von-Mises 应力分布

(b)锚板轴向变形分布图

图 4 OVM7 孔锚板典型的计算结果

壁部分区域不可避免地存在着一定的应力集中(最大应力值为750MPa);大部分

区域应力值低于 500MPa。安全系数约为 1.6。轴向变形值小于 0.11mm。从有限元

计算可知该锚板的结构强度是足够的。

3、锚下应力分析

按照《FIP 后张预应力验收建议》中关于载荷传递试验及《OVM 锚固体系工艺要点》中关于锚板配置最小间距的规定,建立有限元模型。由于该结构为平面对称,取 1/4 体进行分析。混凝土的弹性模量取 3.3×10 MPa, 泊桑比取 0.32,采用体单元建模;锚垫板的弹性模量取 2×10 MPa, 泊桑比取 0.3, 也采用体单元建模,将螺旋筋等效为一圈圈的钢环。按100%的钢绞线破断力加载。计算结果见图 5。

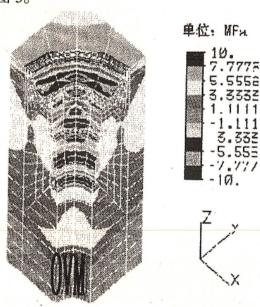


图 5 锚下砼结构第一主应力分布图

从图 5 可见,锚下结构在螺旋筋外侧的拉应力均小于 5MPa,说明该结构是安全的,锚垫板下侧的螺旋筋承受了一定的拉应力,分散了应力集中。

上述分析结果与实际工业试验结果 相吻合,通过分析计算可以确定各型锚 下装置各区域应力值的大小和螺旋筋在 砼结构的合理位置,使锚下装置设计具 有可靠的理论依据,使锚下应力的分布 更为合理。

四、疲劳分析

针对桥梁结构对疲劳性能要求较高的需要,开展了拉索锚疲劳寿命模拟分析工作。

1、平行钢丝拉索锚疲劳分析

拉索锚具用于斜拉桥拉紧平行钢丝 束拉索的装置,根据有关规范要求拉索锚 需通过 200 万次应力幅为 250MPa、上限 应力为 668MPa 的疲劳实验。采用计算机 模拟冷铸锚上述工业试验工况,分析验算 钢丝长短有误差和/或整束索有转角时的 受力状况,并给出在各状况下的疲劳寿命 估计。

1)根据拉索冷铸锚实体结构尺寸建 立非线性有限元分析模型(见图 6);

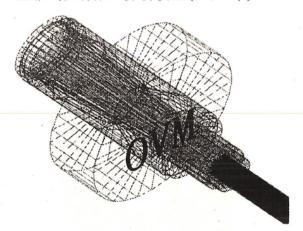
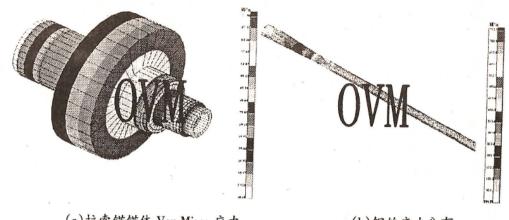



图 6 平行钢丝拉萦锚有限元分析模型

- 2)根据试验条件:应力幅 250MPa,上限应力 668MPa,试验频率 1HZ,给模型加载;
- 3)根据拉索锚结构和制索工艺给钢 丝加上不同的长度误差和转角;

4)应用有限元软件计算出结构的应

力场,见图7;

(a)拉索锚锚体 Von-Mises 应力

(b)钢丝应力分布

图 7 拉索锚应力场

5)选择危险区域,输入疲劳载荷谱, 调用疲劳分析模块进行疲劳寿命估计。对 于该拉索锚,危险区域是应力值最大的钢 丝,输入该根钢丝的疲劳参数,就可估算 疲劳寿命。

通过上述分析步骤,可了解到上述两种因素对产品寿命的影响程度,以便采取相应的措施,保证拉索的耐久性。

2、计算机疲劳分析与工业试验的比 较

经模拟分析,在试验荷载下,钢丝长度和转角对钢丝所承受的应力幅的上限应力有影响,如果钢丝存在着材质不均、微缺陷和磕碰等情况,易导致拉索锚钢丝高应力破断,缩短结构的疲劳寿命。与疲劳工业试验与模拟分析结果是一致的。

由于影响疲劳寿命的因素很多,需要设定的条件与实际工况不可能完全一致, 仿真分析与工业试验结果可能有一定的 出入。为此,在按有关标准进行必要的静 载强度、动载疲劳试验的基础上,根据工 业试验结果不断改进分析模型和方法,使 分析与试验结果逐步吻合,不断提高仿真 分析的准确程度。

五、结 论

利用计算机有限元方法对 OVM 锚固体系中的重要构件和锚下结构进行模拟分析,可以定量地了解其结构强度、疲劳强度,可以利用分析结果改进设计,提高预应力锚固结构的可靠性。并可适当减少所作工业试验的次数,加快企业技术创新进度,降低产品开发成本,是一项投入少,而产出多的高新技术工程。

参考文献

- 1、柳州欧维姆建筑机械有限公司预应力 产品 CAD/CAE 系统鉴定报告, 1997年。
- 2、庄崖屏等,《钢筋混凝土基本构件设计》,地震出版社,1996年。
- 3、《预应力混凝土施工应用手册》,中 国铁道出版社,1994年。