日 预应分(kN)期	$Z_{1_{\#}}$		Z _{8#}		Z _{11#}	
	3029	3033	3026	3028	3031	3027
8. 22	1116.5	1115.8	104.9	1073.3	1079.8	1066. 2
8. 24	1108.5	1077.2	1044.8	1065.5	1077. 2	1062.2
8. 26	1103.0	1073.1	1042.8	1061.7	1073.1	1058, 1
8. 28	1096.5	1058.4	1028.2	1057.8	1058.4	1045.9
8. 30	1094.5	1056.3	1024.0	1057.8	1056.3	1041.7
8. 31	1090.5	1053.5	1022.0	1055.8	1054. 2	1037.6
9.9	1080.4	1061.6	1007	1042.1	1030.5	1014.7
9. 30	1068.3	1043.6	992.7	1032.1	1010.9	1002.1
10.13	1054.1	1029.1	982. 2	1022.2	1008.7	989. 5
10. 28	1010.5	985.2	937.6	979.9	962. 5	936. 5

5. 结语

5.1 预应力梁采用的施工工艺,能满足设计要求,所选用的OVM锚具和低松驰钢铰线施工方便可靠。

5.2 锚索张拉锁定后初期预应力损失 较大,以后逐渐减小,符合应力损失规 律,观测资料表明锚固效果较好。

(上接32页)

- 3、索上行走挂篮方案可行;
- 4、灌浆所需压力在15MPpa~ 25MPpa之间,灌浆速度约为2L/min,浆体横、纵断面无气孔,环氧浆体没有分层现象。
- 5、风振模拟结果表明施工期间锚夹 具能可靠锚固,无滑脱现象;
 - 6、索力测量结果,东面索为470kN,

西面索为450kN,如果考虑到施工误差导致索长差异的因素,两面索力之差将会进一步减小。

六、结束语

通过本次模拟张拉试验,使施工人 员在实践中得到进一步的锻炼,通过对 以上各环节的周详考察,验证了设计,积 累了经验,为岩石大桥施工的顺利进行 提供了有力的保障。

参考文献

(1)林元培编著《斜拉桥》人民交通出版社1994年4月

岩石大林料和素模和张拉试验

孙长军 易刚强 麦俊(执笔)

一、试验目的

斜拉索是将连续支承的轻量柔性长 跨梁体上的外力传递给桥塔的最佳结构 体系。国内斜拉桥的建设亦方兴未艾。汕 头市岩石大桥主桥是采用双塔双索工型。 合结构的斜拉桥,斜拉索采用广西和州 市欧维姆建筑机械有限公司研制开发的 OVM250型平行钢绞线拉索体系。因此这 号拉索采用钢绞线编束来形成,因此这 号拉索采用钢绞线编束来形成,因此这 超长跨度的斜拉桥建设提供了有力的次 超长跨度的斜拉桥建设提供了有力的次采 用,为更好地完成汕头岩石大桥的施工, 欧维姆建筑机械有限公司下属的欧维姆 工程公司进行了斜拉索模拟张拉试验, 以期通过本试验达到以下几个目的:

- 1、模拟斜拉索安装的全过程以熟悉施工工艺;
- 2、对斜拉索安装所使用的锚夹具、 约束器、千斤顶、紧束器等主要产品及设 备的性能和使用情况进行考察以便改 进;
 - 3、索上行走挂篮安装中间索箍的使

用情况;

- 4、模拟现场塔柱最小空间,对整体 张拉千斤顶试安装,以确定张拉端位置;
- 5、检验拉索在拉应力状态下,通过 振动器模拟风载情况下,锚夹具锚固的 可靠性;
- 6、采用频谱分析法对整体索力进行 测试。

二、试验方案简介

汕头岩石大桥采用的OVM250拉索 共7个规格(即19、22、27、31、34、37、43孔 拉索锚具),最短的索为C1号长 59.336m,最长的索为C20号长 272.549m。拉索体系两端为锚具,索体为 带PE护套、低松驰、强度级别为 1770Mpa,Φ15.24mm镀锌钢绞线组成。 本试验建造了一个高13m、塔身采用贝雷 桁架结构的单塔结构模型。模拟索是由 19根无粘结筋组成的拉索及锚具,以及 按空间较小的C20号索张拉空间进行模 拟。模拟索仰角为24度,索长约25.4米, 并与桥面结合利用地基锚杆结构承受拉 索反力。整个试验装置见图1。

孙长军:广西柳州市欧维姆工程公司

易刚强:广西柳州市欧维姆建筑机械有限公司

麦 俊:广西柳州市欧维姆建筑机械有限公司

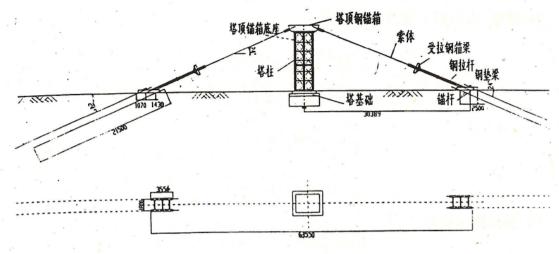
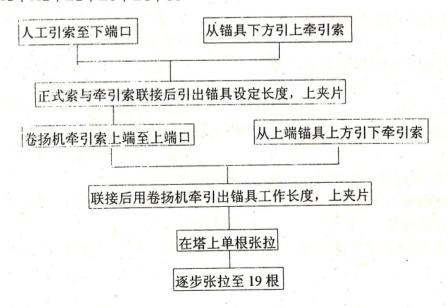


图1 试验总体布置图

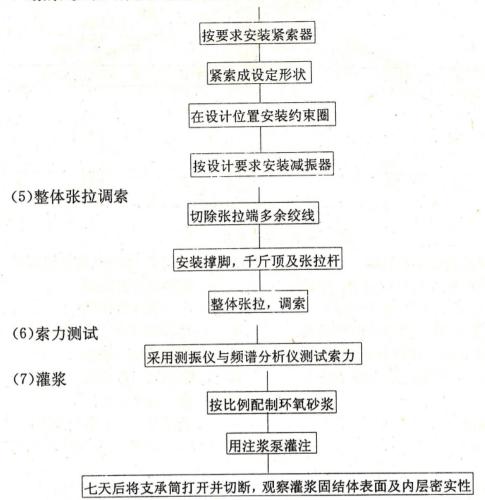
三、主要试验设备及材料

本试验采用的主要设备有:卷扬机、传感器、预紧千斤顶、整体张拉千斤顶、穿束器、紧索器、行走挂篮、平板振动器、测振器及频谱分析仪等设备,材料为OVM250—19型锚具,及前面所述的钢绞线。

四、试验过程


- 1、试验架安装
- 2、斜拉索安装
- (1)钢绞线的下料长度:L=L0+ L1+A1+A2+L2+L3+L4+50

式中L0——设计提供张拉端与固定端 锚垫板底面间距


- L1——固定端预留长度
- A1---张拉端锚具长度
- A2——固定端锚具长度
- L2---张拉端工作长度
- L3---垂直影响长度
- L4----塔梁施工误差影响长度
- (2)索上、下端锚具按设计要求安

装;

(3)两侧同步单根挂索张拉;

(4)紧索、安装约束圈及减振装置

- (8)用索上行走挂篮安装索体中间 的索箍;
- (9)模拟风振检查锚具锚固的可靠 性;
 - (10)拆除试验架。

五、试验结果

1、施工工艺

施工工艺能满足设计安装要求,施 工人员能熟练掌握施工工艺;

2、产品及设备性能

本试验对部分产品细节及设备提出了以下改进意见:

- (1)在锚垫板处开排水槽,以防止施工过程中积水对锚具的浸蚀;
- (2)对张拉千斤顶的细部进行改进, 以方便施工;
- (3)通过对锚具内零件的控制,便于穿束器牵引索;
- (4)通过多加吊装孔,以方便工作螺 母的安装;
- (5)安装索箍时使用特制扳手,以提 高工效;
- (6)通过顶压,更保证单根张拉的可 靠性。(下转20页)